These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 21661318)
1. Spinosad toxicity to Simulium spp. larvae and associated aquatic biota in a coffee-growing region of Veracruz State, Mexico. Infante-Rodríguez DA; Novelo-Gutiérrez R; Mercado G; Williams T J Med Entomol; 2011 May; 48(3):570-6. PubMed ID: 21661318 [TBL] [Abstract][Full Text] [Related]
2. The naturally derived insecticide spinosad is highly toxic to Aedes and Anopheles mosquito larvae. Bond JG; Marina CF; Williams T Med Vet Entomol; 2004 Mar; 18(1):50-6. PubMed ID: 15009445 [TBL] [Abstract][Full Text] [Related]
3. Susceptibility of Simulium damnosum complex larvae to temephos in the Tukuyu onchocerciasis focus, southwest Tanzania. Kalinga AK; Mweya CN; Barro T; Maegga BT Tanzan Health Res Bull; 2007 Jan; 9(1):19-24. PubMed ID: 17547096 [TBL] [Abstract][Full Text] [Related]
4. Efficacy and non-target impact of spinosad, Bti and temephos larvicides for control of Anopheles spp. in an endemic malaria region of southern Mexico. Marina CF; Bond JG; Muñoz J; Valle J; Novelo-Gutiérrez R; Williams T Parasit Vectors; 2014 Jan; 7():55. PubMed ID: 24479683 [TBL] [Abstract][Full Text] [Related]
5. Larvicidal and pupicidal activity of spinosad against the malarial vector Anopheles stephensi. Prabhu K; Murugan K; Nareshkumar A; Bragadeeswaran S Asian Pac J Trop Med; 2011 Aug; 4(8):610-3. PubMed ID: 21914537 [TBL] [Abstract][Full Text] [Related]
6. Laboratory evaluation of pyriproxyfen and spinosad, alone and in combination, against Aedes aegypti larvae. Darriet F; Corbel V J Med Entomol; 2006 Nov; 43(6):1190-4. PubMed ID: 17162952 [TBL] [Abstract][Full Text] [Related]
7. Toxicity of spinosad to temephos-resistant Aedes aegypti populations in Brazil. Dos Santos Dias L; Macoris ML; Andrighetti MT; Otrera VC; Dias AD; Bauzer LG; Rodovalho CM; Martins AJ; Lima JB PLoS One; 2017; 12(3):e0173689. PubMed ID: 28301568 [TBL] [Abstract][Full Text] [Related]
8. [Susceptibility of populations of Simulium (Chirostilbia) pertinax Kollar, 1832 (Culicomorpha, Simuliidae) to eemephos and to Bacillus thuringiensis var. israelensis-based formulation]. de Andrade CF; Castello Branco Júnior A Rev Saude Publica; 1991 Oct; 25(5):367-70. PubMed ID: 1726481 [TBL] [Abstract][Full Text] [Related]
9. Spinosad as an effective larvicide for control of Aedes albopictus and Aedes aegypti, vectors of dengue in southern Mexico. Marina CF; Bond JG; Casas M; Muñoz J; Orozco A; Valle J; Williams T Pest Manag Sci; 2011 Jan; 67(1):114-21. PubMed ID: 21162151 [TBL] [Abstract][Full Text] [Related]
10. Elimination of the Djodji form of the blackfly Simulium sanctipauli sensu stricto as a result of larviciding by the WHO Onchocerciasis Control Programme in West Africa. Cheke RA; Fiasorgbor GK; Walsh JF; Yameogo L Med Vet Entomol; 2008 Jun; 22(2):172-4. PubMed ID: 18498618 [TBL] [Abstract][Full Text] [Related]
11. Spinosad, a naturally derived insecticide, for control of Aedes aegypti (Diptera: Culicidae): efficacy, persistence, and elicited oviposition response. Pérez CM; Marina CF; Bond JG; Rojas JC; Valle J; Williams T J Med Entomol; 2007 Jul; 44(4):631-8. PubMed ID: 17695018 [TBL] [Abstract][Full Text] [Related]
12. Spinosad and neem seed kernel extract as bio-controlling agents for malarial vector, Anopheles stephensi and non-biting midge, Chironomus circumdatus. Kumar AN; Murugan K; Madhiyazhagan P; Prabhu K Asian Pac J Trop Med; 2011 Aug; 4(8):614-8. PubMed ID: 21914538 [TBL] [Abstract][Full Text] [Related]
13. Efficacy of larvicides for the control of dengue, Zika, and chikungunya vectors in an urban cemetery in southern Mexico. Marina CF; Bond JG; Muñoz J; Valle J; Quiroz-Martínez H; Torres-Monzón JA; Williams T Parasitol Res; 2018 Jun; 117(6):1941-1952. PubMed ID: 29713901 [TBL] [Abstract][Full Text] [Related]
14. Laboratory evaluation of two novel strategies to control first-instar gypsy moth larvae with spinosad applied to tree trunks. Wanner KW; Helson BV; Harris BJ Pest Manag Sci; 2002 Aug; 58(8):817-24. PubMed ID: 12192907 [TBL] [Abstract][Full Text] [Related]
15. The effects of spinosad on Culex quinquefasciatus and three nontarget insect species. Jones OM; Ottea J J Am Mosq Control Assoc; 2013 Dec; 29(4):346-51. PubMed ID: 24551967 [TBL] [Abstract][Full Text] [Related]
16. Spinosad: a biorational mosquito larvicide for use in car tires in southern Mexico. Marina CF; Bond JG; Muñoz J; Valle J; Chirino N; Williams T Parasit Vectors; 2012 May; 5():95. PubMed ID: 22608138 [TBL] [Abstract][Full Text] [Related]
17. Paradoxical effects of sublethal exposure to the naturally derived insecticide spinosad in the dengue vector mosquito, Aedes aegypti. Antonio GE; Sánchez D; Williams T; Marina CF Pest Manag Sci; 2009 Mar; 65(3):323-6. PubMed ID: 19051219 [TBL] [Abstract][Full Text] [Related]
18. Comparison of novaluron, pyriproxyfen, spinosad and temephos as larvicides against Aedes aegypti in Chiapas, Mexico. Marina CF; Bond JG; Muñoz J; Valle J; Quiroz-Martínez H; Torres-Monzón JA; Williams T Salud Publica Mex; 2020; 62(4):424-431. PubMed ID: 32549084 [TBL] [Abstract][Full Text] [Related]
19. Effectiveness of spinosad and temephos for the control of mosquito larvae at a tire dump in Allende, Nuevo Leon, Mexico. Garza-Robledo AA; Martínez-Perales JF; Rodríguez-Castro VA; Quiroz-Martínez H J Am Mosq Control Assoc; 2011 Dec; 27(4):404-7. PubMed ID: 22329273 [TBL] [Abstract][Full Text] [Related]
20. Transmission of Onchocerca volvulus and prospects for the elimination of its vector, the blackfly Simulium neavei in the Mpamba-Nkusi focus in Western Uganda. Lakwo TL; Ndyomugyenyi R; Onapa AW; Twebaze C Med Vet Entomol; 2006 Mar; 20(1):93-101. PubMed ID: 16608493 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]