These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 216616)

  • 41. Lipid solvation of cytochrome c oxidase. Deuterium, nitrogen-14, and phosphorus-31 nuclear magnetic resonance studies on the phosphocholine head group and on cis-unsaturated fatty acyl chains.
    Tamm LK; Seelig J
    Biochemistry; 1983 Mar; 22(6):1474-83. PubMed ID: 6301550
    [No Abstract]   [Full Text] [Related]  

  • 42. Incorporation of bile acid of low concentration into model and biological membranes studied by 2H and 31P NMR.
    Saitŏ H; Sugimoto Y; Tabeta R; Suzuki S; Izumi G; Kodama M; Toyoshima S; Nagata C
    J Biochem; 1983 Dec; 94(6):1877-87. PubMed ID: 6671970
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Stages of the bilayer-micelle transition in the system phosphatidylcholine-C12E8 as studied by deuterium- and phosphorous-NMR, light scattering, and calorimetry.
    Otten D; Löbbecke L; Beyer K
    Biophys J; 1995 Feb; 68(2):584-97. PubMed ID: 7696511
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Studies on protein-lipid interactions in cytochrome c oxidase by differential scanning calorimetry.
    Yu CA; Gwak SH; Yu L
    Biochim Biophys Acta; 1985 Feb; 812(3):656-64. PubMed ID: 2982398
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Binding of oligoarginine to membrane lipids and heparan sulfate: structural and thermodynamic characterization of a cell-penetrating peptide.
    Gonçalves E; Kitas E; Seelig J
    Biochemistry; 2005 Feb; 44(7):2692-702. PubMed ID: 15709783
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification of trapped and boundary lipid binding sites in M13 coat protein/lipid complexes by deuterium NMR spectroscopy.
    Van Gorkom LC; Horváth LI; Hemminga MA; Sternberg B; Watts A
    Biochemistry; 1990 Apr; 29(16):3828-34. PubMed ID: 2354153
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structure of docosahexaenoic acid-containing phospholipid bilayers as studied by (2)H NMR and molecular dynamics simulations.
    Huber T; Rajamoorthi K; Kurze VF; Beyer K; Brown MF
    J Am Chem Soc; 2002 Jan; 124(2):298-309. PubMed ID: 11782182
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Thermal stability of membrane-reconstituted yeast cytochrome c oxidase.
    Morin PE; Diggs D; Freire E
    Biochemistry; 1990 Jan; 29(3):781-8. PubMed ID: 2159790
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Influence of cholesterol on the polar region of phosphatidylcholine and phosphatidylethanolamine bilayers.
    Brown MF; Seelig J
    Biochemistry; 1978 Jan; 17(2):381-4. PubMed ID: 619997
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of bacteriorhodopsin on the orientation of the headgroup of 1,2-dimyristoyl-sn-glycero-3-phosphocholine in bilayers: a 31P- and 2H-NMR study.
    Gale P; Watts A
    Biochim Biophys Acta; 1992 May; 1106(2):317-24. PubMed ID: 1596511
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Phospholipid transfer between vesicles. Dependence on presence of cytochrome P-450 and phosphatidylcholine-phosphatidylethanolamine ratio.
    Bösterling B; Trudell JR
    Biochim Biophys Acta; 1982 Jul; 689(1):155-60. PubMed ID: 6285973
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Shiga toxin binding alters lipid packing and the domain structure of Gb
    Bosse M; Sibold J; Scheidt HA; Patalag LJ; Kettelhoit K; Ries A; Werz DB; Steinem C; Huster D
    Phys Chem Chem Phys; 2019 Jul; 21(28):15630-15638. PubMed ID: 31268447
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The effect of cytochrome c oxidase on lipid polymorphism of model membranes containing cardiolipin.
    Rietveld A; van Kemenade TJ; Hak T; Verkleij AJ; de Kruijff B
    Eur J Biochem; 1987 Apr; 164(1):137-40. PubMed ID: 3030748
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Carbon-13 nuclear magnetic resonance studies on the interaction of glycophorin with lecithin in reconstituted vesicles.
    Utsumi H; Tunggal BD; Stoffel W
    Biochemistry; 1980 May; 19(11):2385-90. PubMed ID: 7387980
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Calcium binding to mixed cardiolipin-phosphatidylcholine bilayers as studied by deuterium nuclear magnetic resonance.
    Macdonald PM; Seelig J
    Biochemistry; 1987 Sep; 26(19):6292-8. PubMed ID: 3689777
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Melittin binding to mixed phosphatidylglycerol/phosphatidylcholine membranes.
    Beschiaschvili G; Seelig J
    Biochemistry; 1990 Jan; 29(1):52-8. PubMed ID: 2322549
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Coverage-dependent changes of cytochrome c transverse location in phospholipid membranes revealed by FRET.
    Domanov YA; Molotkovsky JG; Gorbenko GP
    Biochim Biophys Acta; 2005 Oct; 1716(1):49-58. PubMed ID: 16183372
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Exchangeability and rate of flip-flop of phosphatidylcholine in large unilamellar vesicles, cholate dialysis vesicles, and cytochrome oxidase vesicles.
    Dicorleto PE; Zilversmit DB
    Biochim Biophys Acta; 1979 Mar; 552(1):114-9. PubMed ID: 219890
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Physicochemical characterization of 1,2-diphytanoyl-sn-glycero-3-phosphocholine in model membrane systems.
    Lindsey H; Petersen NO; Chan SI
    Biochim Biophys Acta; 1979 Jul; 555(1):147-67. PubMed ID: 476096
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Bilayer structure in phospholipid-cytochrome c model membranes.
    Shui-Pong-Van ; Griffith OH
    J Membr Biol; 1975; 20(1-2):155-70. PubMed ID: 164553
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.