These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 216616)

  • 61. Electric charge effects on phospholipid headgroups. Phosphatidylcholine in mixtures with cationic and anionic amphiphiles.
    Scherer PG; Seelig J
    Biochemistry; 1989 Sep; 28(19):7720-8. PubMed ID: 2611211
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Solid-state nuclear magnetic resonance relaxation studies of the interaction mechanism of antimicrobial peptides with phospholipid bilayer membranes.
    Lu JX; Damodaran K; Blazyk J; Lorigan GA
    Biochemistry; 2005 Aug; 44(30):10208-17. PubMed ID: 16042398
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Poly(ethylene glycol)-induced and temperature-dependent phase separation in fluid binary phospholipid membranes.
    Lehtonen JY; Kinnunen PK
    Biophys J; 1995 Feb; 68(2):525-35. PubMed ID: 7696506
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Deuterium nuclear magnetic resonance investigation of the effects of proteins and polypeptides on hydrocarbon chain order in model membrane systems.
    Oldfield E; Gilmore R; Glaser M; Gutowsky HS; Hshung JC; Kang SY; King TE; Meadows M; Rice D
    Proc Natl Acad Sci U S A; 1978 Oct; 75(10):4657-60. PubMed ID: 16592570
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Interaction of melittin with phosphatidylcholine membranes. Binding isotherm and lipid head-group conformation.
    Kuchinka E; Seelig J
    Biochemistry; 1989 May; 28(10):4216-21. PubMed ID: 2765482
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A carbon-13 nuclear magnetic resonance spectroscopic study of inter-proton pair order parameters: a new approach to study order and dynamics in phospholipid membrane systems.
    Urbina JA; Moreno B; Arnold W; Taron CH; Orlean P; Oldfield E
    Biophys J; 1998 Sep; 75(3):1372-83. PubMed ID: 9726938
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The glycophorin-phospholipid interface in recombined systems. A 31P-nuclear magnetic resonance study.
    Yeagle PL; Romans AY
    Biophys J; 1981 Feb; 33(2):243-52. PubMed ID: 7225506
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A correlation between lipid domain shape and binary phospholipid mixture composition in free standing bilayers: A two-photon fluorescence microscopy study.
    Bagatolli LA; Gratton E
    Biophys J; 2000 Jul; 79(1):434-47. PubMed ID: 10866969
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Membrane packing geometry of diphytanoylphosphatidylcholine is highly sensitive to hydration: phospholipid polymorphism induced by molecular rearrangement in the headgroup region.
    Hsieh CH; Sue SC; Lyu PC; Wu WG
    Biophys J; 1997 Aug; 73(2):870-7. PubMed ID: 9251804
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Binding of bovine seminal plasma protein BSP-A1/-A2 to model membranes: lipid specificity and effect of the temperature.
    Lassiseraye D; Courtemanche L; Bergeron A; Manjunath P; Lafleur M
    Biochim Biophys Acta; 2008 Feb; 1778(2):502-13. PubMed ID: 18035041
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Spectroscopic studies of specifically deuterium labeled membrane systems. Nuclear magnetic resonance investigation of the effects of cholesterol in model systems.
    Oldfield E; Meadows M; Rice D; Jacobs R
    Biochemistry; 1978 Jul; 17(14):2727-40. PubMed ID: 687560
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Evidence for phospholipid microdomain formation in liquid crystalline liposomes reconstituted with Escherichia coli lactose permease.
    Lehtonen JY; Kinnunen PK
    Biophys J; 1997 Mar; 72(3):1247-57. PubMed ID: 9138570
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Protein--immobilized lipid in dimyristoylphosphatidylcholine-substituted cytochrome oxidase: evidence for both boundary and trapped-bilayer lipid.
    Marsh D; Watts A; Maschke W; Knowles PF
    Biochem Biophys Res Commun; 1978 Mar; 81(2):397-402. PubMed ID: 208520
    [No Abstract]   [Full Text] [Related]  

  • 74. Incorporation of cytochrome oxidase into cardiolipin bilayers and induction of nonlamellar phases.
    Powell GL; Knowles PF; Marsh D
    Biochemistry; 1990 May; 29(21):5127-32. PubMed ID: 2165803
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Hydrostatic pressure-induced conformational changes in phosphatidylcholine headgroups: a 2H NMR study.
    Bonev BB; Morrow MR
    Biophys J; 1995 Aug; 69(2):518-23. PubMed ID: 8527666
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Cytochrome c mediates electron transfer between ubiquinol-cytochrome c reductase and cytochrome c oxidase by free diffusion along the surface of the membrane.
    Froud RJ; Ragan CI
    Biochem J; 1984 Jan; 217(2):561-71. PubMed ID: 6320811
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Dynamics of the phosphate group in phospholipid bilayers. A 31P-1H transient Overhauser effect study.
    Milburn MP; Jeffrey KR
    Biophys J; 1990 Jul; 58(1):187-94. PubMed ID: 2383631
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Investigation of anion binding to neutral lipid membranes using 2H NMR.
    Rydall JR; Macdonald PM
    Biochemistry; 1992 Feb; 31(4):1092-9. PubMed ID: 1734958
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Lipid and subunit III depleted cytochrome c oxidase purified by horse cytochrome c affinity chromatography in lauryl maltoside.
    Thompson DA; Ferguson-Miller S
    Biochemistry; 1983 Jun; 22(13):3178-87. PubMed ID: 6309217
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Deuterium nuclear magnetic resonance studies on the interaction of glycophorin with 1,2-dimyristoylamido-1,2-deoxyphosphatidylcholine.
    Sunamoto J; Nagai K; Goto M; Lindman B
    Biochim Biophys Acta; 1990 May; 1024(2):220-6. PubMed ID: 2162203
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.