These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
64. Deuterium nuclear magnetic resonance investigation of the effects of proteins and polypeptides on hydrocarbon chain order in model membrane systems. Oldfield E; Gilmore R; Glaser M; Gutowsky HS; Hshung JC; Kang SY; King TE; Meadows M; Rice D Proc Natl Acad Sci U S A; 1978 Oct; 75(10):4657-60. PubMed ID: 16592570 [TBL] [Abstract][Full Text] [Related]
65. Interaction of melittin with phosphatidylcholine membranes. Binding isotherm and lipid head-group conformation. Kuchinka E; Seelig J Biochemistry; 1989 May; 28(10):4216-21. PubMed ID: 2765482 [TBL] [Abstract][Full Text] [Related]
66. A carbon-13 nuclear magnetic resonance spectroscopic study of inter-proton pair order parameters: a new approach to study order and dynamics in phospholipid membrane systems. Urbina JA; Moreno B; Arnold W; Taron CH; Orlean P; Oldfield E Biophys J; 1998 Sep; 75(3):1372-83. PubMed ID: 9726938 [TBL] [Abstract][Full Text] [Related]
67. The glycophorin-phospholipid interface in recombined systems. A 31P-nuclear magnetic resonance study. Yeagle PL; Romans AY Biophys J; 1981 Feb; 33(2):243-52. PubMed ID: 7225506 [TBL] [Abstract][Full Text] [Related]
68. A correlation between lipid domain shape and binary phospholipid mixture composition in free standing bilayers: A two-photon fluorescence microscopy study. Bagatolli LA; Gratton E Biophys J; 2000 Jul; 79(1):434-47. PubMed ID: 10866969 [TBL] [Abstract][Full Text] [Related]
69. Membrane packing geometry of diphytanoylphosphatidylcholine is highly sensitive to hydration: phospholipid polymorphism induced by molecular rearrangement in the headgroup region. Hsieh CH; Sue SC; Lyu PC; Wu WG Biophys J; 1997 Aug; 73(2):870-7. PubMed ID: 9251804 [TBL] [Abstract][Full Text] [Related]
70. Binding of bovine seminal plasma protein BSP-A1/-A2 to model membranes: lipid specificity and effect of the temperature. Lassiseraye D; Courtemanche L; Bergeron A; Manjunath P; Lafleur M Biochim Biophys Acta; 2008 Feb; 1778(2):502-13. PubMed ID: 18035041 [TBL] [Abstract][Full Text] [Related]
71. Spectroscopic studies of specifically deuterium labeled membrane systems. Nuclear magnetic resonance investigation of the effects of cholesterol in model systems. Oldfield E; Meadows M; Rice D; Jacobs R Biochemistry; 1978 Jul; 17(14):2727-40. PubMed ID: 687560 [TBL] [Abstract][Full Text] [Related]
76. Cytochrome c mediates electron transfer between ubiquinol-cytochrome c reductase and cytochrome c oxidase by free diffusion along the surface of the membrane. Froud RJ; Ragan CI Biochem J; 1984 Jan; 217(2):561-71. PubMed ID: 6320811 [TBL] [Abstract][Full Text] [Related]
77. Dynamics of the phosphate group in phospholipid bilayers. A 31P-1H transient Overhauser effect study. Milburn MP; Jeffrey KR Biophys J; 1990 Jul; 58(1):187-94. PubMed ID: 2383631 [TBL] [Abstract][Full Text] [Related]
78. Investigation of anion binding to neutral lipid membranes using 2H NMR. Rydall JR; Macdonald PM Biochemistry; 1992 Feb; 31(4):1092-9. PubMed ID: 1734958 [TBL] [Abstract][Full Text] [Related]
79. Lipid and subunit III depleted cytochrome c oxidase purified by horse cytochrome c affinity chromatography in lauryl maltoside. Thompson DA; Ferguson-Miller S Biochemistry; 1983 Jun; 22(13):3178-87. PubMed ID: 6309217 [TBL] [Abstract][Full Text] [Related]
80. Deuterium nuclear magnetic resonance studies on the interaction of glycophorin with 1,2-dimyristoylamido-1,2-deoxyphosphatidylcholine. Sunamoto J; Nagai K; Goto M; Lindman B Biochim Biophys Acta; 1990 May; 1024(2):220-6. PubMed ID: 2162203 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]