BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 21661729)

  • 1. Transient enzyme-substrate recognition monitored by real-time NMR.
    Haupt C; Patzschke R; Weininger U; Gröger S; Kovermann M; Balbach J
    J Am Chem Soc; 2011 Jul; 133(29):11154-62. PubMed ID: 21661729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The prolyl isomerase SlyD is a highly efficient enzyme but decelerates the conformational folding of a client protein.
    Zoldák G; Geitner AJ; Schmid FX
    J Am Chem Soc; 2013 Mar; 135(11):4372-9. PubMed ID: 23445547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NMR solution structure of SlyD from Escherichia coli: spatial separation of prolyl isomerase and chaperone function.
    Weininger U; Haupt C; Schweimer K; Graubner W; Kovermann M; Brüser T; Scholz C; Schaarschmidt P; Zoldak G; Schmid FX; Balbach J
    J Mol Biol; 2009 Mar; 387(2):295-305. PubMed ID: 19356587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cooperation of the prolyl isomerase and chaperone activities of the protein folding catalyst SlyD.
    Zoldák G; Schmid FX
    J Mol Biol; 2011 Feb; 406(1):176-94. PubMed ID: 21147124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SlyD proteins from different species exhibit high prolyl isomerase and chaperone activities.
    Scholz C; Eckert B; Hagn F; Schaarschmidt P; Balbach J; Schmid FX
    Biochemistry; 2006 Jan; 45(1):20-33. PubMed ID: 16388577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local and coupled thermodynamic stability of the two-domain and bifunctional enzyme SlyD from Escherichia coli.
    Haupt C; Weininger U; Kovermann M; Balbach J
    Biochemistry; 2011 Aug; 50(34):7321-9. PubMed ID: 21770389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic control of the prolyl isomerase function of the dual-domain SlyD protein.
    Kovermann M; Balbach J
    Biophys Chem; 2013 Jan; 171():16-23. PubMed ID: 23268194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of a highly active folding enzyme by combining a parvulin-type prolyl isomerase from SurA with an unrelated chaperone domain.
    Geitner AJ; Varga E; Wehmer M; Schmid FX
    J Mol Biol; 2013 Nov; 425(22):4089-98. PubMed ID: 23871892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nickel binding and [NiFe]-hydrogenase maturation by the metallochaperone SlyD with a single metal-binding site in Escherichia coli.
    Kaluarachchi H; Altenstein M; Sugumar SR; Balbach J; Zamble DB; Haupt C
    J Mol Biol; 2012 Mar; 417(1-2):28-35. PubMed ID: 22310044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insertion of a chaperone domain converts FKBP12 into a powerful catalyst of protein folding.
    Knappe TA; Eckert B; Schaarschmidt P; Scholz C; Schmid FX
    J Mol Biol; 2007 May; 368(5):1458-68. PubMed ID: 17397867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High enzymatic activity and chaperone function are mechanistically related features of the dimeric E. coli peptidyl-prolyl-isomerase FkpA.
    Ramm K; Plückthun A
    J Mol Biol; 2001 Jul; 310(2):485-98. PubMed ID: 11428902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NMR solution structure and dynamics of the peptidyl-prolyl cis-trans isomerase domain of the trigger factor from Mycoplasma genitalium compared to FK506-binding protein.
    Vogtherr M; Jacobs DM; Parac TN; Maurer M; Pahl A; Saxena K; Rüterjans H; Griesinger C; Fiebig KM
    J Mol Biol; 2002 May; 318(4):1097-115. PubMed ID: 12054805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NMR assignments of the peptidyl-prolyl cis-trans isomerase domain of trigger factor from E. coli.
    Huang CT; Hsu ST
    Biomol NMR Assign; 2016 Apr; 10(1):149-52. PubMed ID: 26527152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combination of the human prolyl isomerase FKBP12 with unrelated chaperone domains leads to chimeric folding enzymes with high activity.
    Geitner AJ; Schmid FX
    J Mol Biol; 2012 Jul; 420(4-5):335-49. PubMed ID: 22542528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioactivity of folding intermediates studied by the recovery of enzymatic activity during refolding.
    Aumüller T; Fischer G
    J Mol Biol; 2008 Mar; 376(5):1478-92. PubMed ID: 18234226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure determination and functional characterization of the metallochaperone SlyD from Thermus thermophilus.
    Löw C; Neumann P; Tidow H; Weininger U; Haupt C; Friedrich-Epler B; Scholz C; Stubbs MT; Balbach J
    J Mol Biol; 2010 May; 398(3):375-90. PubMed ID: 20230833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The protein-free IANUS peptide array uncovers interaction sites between Escherichia coli parvulin 10 and alkyl hydroperoxide reductase.
    Malesević M; Poehlmann A; Hernandez Alvarez B; Diessner A; Träger M; Rahfeld JU; Jahreis G; Liebscher S; Bordusa F; Fischer G; Lücke C
    Biochemistry; 2010 Oct; 49(39):8626-35. PubMed ID: 20806779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic models for unfolding and refolding of ribonuclease T1 with substitution of cis-proline 39 by alanine.
    Mayr LM; Schmid FX
    J Mol Biol; 1993 Jun; 231(3):913-26. PubMed ID: 8515460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recognition of protein substrates by the prolyl isomerase trigger factor is independent of proline residues.
    Scholz C; Mücke M; Rape M; Pecht A; Pahl A; Bang H; Schmid FX
    J Mol Biol; 1998 Apr; 277(3):723-32. PubMed ID: 9533890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding specificity of Escherichia coli trigger factor.
    Patzelt H; Rüdiger S; Brehmer D; Kramer G; Vorderwülbecke S; Schaffitzel E; Waitz A; Hesterkamp T; Dong L; Schneider-Mergener J; Bukau B; Deuerling E
    Proc Natl Acad Sci U S A; 2001 Dec; 98(25):14244-9. PubMed ID: 11724963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.