BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 2166233)

  • 1. Captan binding to avian myeloblastosis virus reverse transcriptase and its effect on RNase H activity.
    Freeman-Wittig MJ; Lewis RA
    Mol Cell Biochem; 1990 Apr; 94(1):9-17. PubMed ID: 2166233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential effects of captan on DNA polymerase and ribonuclease H activities of avian myeloblastosis virus reverse transcriptase.
    Freeman-Wittig MJ; Vinocour M; Lewis RA
    Biochemistry; 1986 May; 25(10):3050-5. PubMed ID: 2424494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intrinsic properties of reverse transcriptase in reverse transcription. Associated RNase H is essentially regarded as an endonuclease.
    Oyama F; Kikuchi R; Crouch RJ; Uchida T
    J Biol Chem; 1989 Nov; 264(31):18808-17. PubMed ID: 2478553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanistic independence of avian myeloblastosis virus DNA polymerase and ribonuclease H.
    Brewer LC; Wells RD
    J Virol; 1974 Dec; 14(6):1494-502. PubMed ID: 4372408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of RNA primer removal by the RNase H activity of avian myeloblastosis virus reverse transcriptase.
    Champoux JJ; Gilboa E; Baltimore D
    J Virol; 1984 Mar; 49(3):686-91. PubMed ID: 6199510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mechanism of inhibition of avian myeloblastosis virus reverse transcriptase by a dialdehyde derivative of ATP. Inactivation of essential sulfhydryl group function.
    Srivastava SK; Abraham KI; Modak MJ
    Biochim Biophys Acta; 1983 Jun; 745(2):194-201. PubMed ID: 6189518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissociation of alpha beta DNA polymerase of avian myeloblastosis virus by dimethyl sulfoxide.
    Grandgenett DP
    J Virol; 1976 Mar; 17(3):950-61. PubMed ID: 56461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reverse transcriptase-associated RNase H activity. II. Inhibition by natural and synthetic RNA.
    Marcus SL; Smith SW; Modak MJ
    J Virol; 1978 Sep; 27(3):576-81. PubMed ID: 81313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of release of active alpha subunit from dimeric alpha beta avian myeloblastosis virus DNA polymerase.
    Papas TS; Marciani DJ; Samuel K; Chirikjian JG
    J Virol; 1976 Jun; 18(3):904-10. PubMed ID: 58080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding of captan to DNA polymerase I from Escherichia coli and the concomitant effect on 5'----3' exonuclease activity.
    Freeman-Wittig MJ; Welch W; Lewis RA
    Biochemistry; 1989 Apr; 28(7):2843-9. PubMed ID: 2663061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reverse transcriptase of RNA tumor viruses. V. In vitro proteolysis of reverse transcriptase from avian myeloblastosis virus and isolation of a polypeptide manifesting only RNase H activity.
    Lai MH; Verma IM
    J Virol; 1978 Feb; 25(2):652-63. PubMed ID: 75271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNase H-mediated release of the retrovirus RNA polyadenylate tail during reverse transcription.
    Olsen JC; Watson KF
    J Virol; 1985 Jan; 53(1):324-9. PubMed ID: 2578196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discrimination of DNA polymerase and RNase H activities in reverse transcriptase of avian myeloblastosis virus.
    Gorecki M; Panet A
    Biochemistry; 1978 Jun; 17(12):2438-42. PubMed ID: 79419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reverse transcriptase-associated RNase H. Part IV. Pyrophosphate does not inhibit RNase H activity of AMV DNA polymerase.
    Srivastava A; Modak MJ
    Biochem Biophys Res Commun; 1979 Dec; 91(3):892-9. PubMed ID: 93479
    [No Abstract]   [Full Text] [Related]  

  • 15. Structural characterization of the avian retrovirus reverse transcriptase and endonuclease domains.
    Grandgenett D; Quinn T; Hippenmeyer PJ; Oroszlan S
    J Biol Chem; 1985 Jul; 260(14):8243-9. PubMed ID: 2989284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model RNA-directed DNA synthesis by avian myeloblastosis virus DNA polymerase and its associated RNase H.
    Watson KF; Schendel PL; Rosok MJ; Ramsey LR
    Biochemistry; 1979 Jul; 18(15):3210-9. PubMed ID: 88956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative studies of the inhibitory properties of antibiotics on human immunodeficiency virus and avian myeloblastosis virus reverse transcriptases and cellular DNA polymerases.
    Take Y; Inouye Y; Nakamura S; Allaudeen HS; Kubo A
    J Antibiot (Tokyo); 1989 Jan; 42(1):107-15. PubMed ID: 2466028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of action of Moloney murine leukemia virus RNA-directed DNA polymerase associated RNase H (RNase H I).
    Gerard GF
    Biochemistry; 1981 Jan; 20(2):256-65. PubMed ID: 6162482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural features required for the binding of tRNATrp to avian myeloblastosis virus reverse transcriptase.
    Hu JC; Dahlberg JE
    Nucleic Acids Res; 1983 Jul; 11(14):4823-33. PubMed ID: 6192393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequence relatedness between the subunits of avian myeloblastosis virus reverse transcriptase.
    Rho HM; Grandgenett DP; Green M
    J Biol Chem; 1975 Jul; 250(13):5278-80. PubMed ID: 50321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.