BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 2166244)

  • 21. Transient postnatal increases in excitatory amino acid binding sites in rat ventral mesencephalon.
    Chaudieu I; Mount H; Quirion R; Boksa P
    Neurosci Lett; 1991 Dec; 133(2):267-70. PubMed ID: 1667817
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of L-glutamate and kainate binding sites in the brain of a freshwater fish, Telapilia monsanbica.
    Tong CK; Pan MP; Chang YC
    Neuroscience; 1992 Jul; 49(1):237-46. PubMed ID: 1328931
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kainate receptors in the rat hippocampus: a distribution and time course of changes in response to unilateral lesions of the entorhinal cortex.
    Ułas J; Monaghan DT; Cotman CW
    J Neurosci; 1990 Jul; 10(7):2352-62. PubMed ID: 2165522
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Maturation of kainic acid seizure-brain damage syndrome in the rat. III. Postnatal development of kainic acid binding sites in the limbic system.
    Berger ML; Tremblay E; Nitecka L; Ben-Ari Y
    Neuroscience; 1984 Dec; 13(4):1095-104. PubMed ID: 6527791
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aberrant growth of mossy fibers and enhanced kainic acid binding sites induced in rats by early hyperthyroidism.
    Represa A; Tremblay E; Ben-Ari Y
    Brain Res; 1987 Oct; 423(1-2):325-8. PubMed ID: 2823988
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evidence for interactions between [3H]glutamate and [3H]kainic acid binding sites in rat striatal membranes. Possible relevance for kainic acid neurotoxicity.
    Fuxe K; Agnati LF; Celani MF
    Neurosci Lett; 1983 Mar; 35(3):233-8. PubMed ID: 6843895
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biochemical characterization of an autoradiographic method for studying excitatory amino acid receptors using L-[3H]glutamate.
    Cincotta M; Summers RJ; Beart PM
    Anal Biochem; 1989 Feb; 177(1):150-5. PubMed ID: 2568102
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vitro autoradiography of ionotropic glutamate receptors in hippocampus and striatum of aged Long-Evans rats: relationship to spatial learning.
    Nicolle MM; Bizon JL; Gallagher M
    Neuroscience; 1996 Oct; 74(3):741-56. PubMed ID: 8884770
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A multidisciplinary study of folic acid neurotoxicity: interactions with kainate binding sites and relevance to the aetiology of epilepsy.
    Tremblay E; Berger M; Nitecka L; Cavalheiro E; Ben-Ari Y
    Neuroscience; 1984 Jun; 12(2):569-89. PubMed ID: 6462463
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Systemic administration of kainic acid induces selective time dependent decrease in [125I]insulin-like growth factor I, [125I]insulin-like growth factor II and [125I]insulin receptor binding sites in adult rat hippocampal formation.
    Kar S; Seto D; Doré S; Chabot JG; Quirion R
    Neuroscience; 1997 Oct; 80(4):1041-55. PubMed ID: 9284059
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kainate and quisqualate receptor autoradiography in rat brain after angular bundle kindling.
    Okazaki MM; McNamara JO; Nadler JV
    Neuroscience; 1990; 37(1):135-42. PubMed ID: 2173811
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Autoradiographic characterization of N-methyl-D-aspartate-, quisqualate- and kainate-sensitive glutamate binding sites.
    Greenamyre JT; Olson JM; Penney JB; Young AB
    J Pharmacol Exp Ther; 1985 Apr; 233(1):254-63. PubMed ID: 2984415
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A study of cortical and hippocampal NMDA and PCP receptors following selective cortical and subcortical lesions.
    Maragos WF; Greenamyre JT; Chu DC; Penney JB; Young AB
    Brain Res; 1991 Jan; 538(1):36-45. PubMed ID: 1850317
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Altered distribution of excitatory amino acid receptors in temporal lobe epilepsy.
    Geddes JW; Cahan LD; Cooper SM; Kim RC; Choi BH; Cotman CW
    Exp Neurol; 1990 Jun; 108(3):214-20. PubMed ID: 2161774
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differential alterations of cortical glutamatergic binding sites in senile dementia of the Alzheimer type.
    Chalmers DT; Dewar D; Graham DI; Brooks DN; McCulloch J
    Proc Natl Acad Sci U S A; 1990 Feb; 87(4):1352-6. PubMed ID: 2154742
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Autoradiographic analysis of neuropeptide Y receptor binding sites in the rat hippocampus after kainic acid-induced limbic seizures.
    Röder C; Schwarzer C; Vezzani A; Gobbi M; Mennini T; Sperk G
    Neuroscience; 1996 Jan; 70(1):47-55. PubMed ID: 8848135
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ontogeny of receptor binding sites for [3H]glutamic acid and [3H]kainic acid in the rat cerebellum.
    Slevin JT; Coyle JT
    J Neurochem; 1981 Aug; 37(2):531-3. PubMed ID: 6114990
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantitative autoradiographic analysis of glutamate binding sites in the hippocampal formation in normal and schizophrenic brain post mortem.
    Kerwin R; Patel S; Meldrum B
    Neuroscience; 1990; 39(1):25-32. PubMed ID: 1982465
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The binding properties and regional ontogeny for [3H]glutamic acid Na+-independent and [3H]kainic acid binding sites in chick brain.
    Voukelatou G; Angelatoy F; Kouvelas ED
    Int J Dev Neurosci; 1986; 4(4):339-52. PubMed ID: 2844064
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Changes in excitatory amino acid receptor binding in the intact and decorticated rat neostriatum following insulin-induced hypoglycemia.
    Westerberg E; Wieloch TW
    J Neurochem; 1989 May; 52(5):1340-7. PubMed ID: 2565371
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.