These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 21662765)

  • 1. Error analysis of the rapid lifetime determination method for double-exponential decays and new windowing schemes.
    Sharman KK; Periasamy A; Ashworth H; Demas JN
    Anal Chem; 1999 Mar; 71(5):947-52. PubMed ID: 21662765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic windowing algorithm for the fast and accurate determination of luminescence lifetimes.
    Collier BB; McShane MJ
    Anal Chem; 2012 Jun; 84(11):4725-31. PubMed ID: 22510153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimized gating scheme for rapid lifetime determinations of single-exponential luminescence lifetimes.
    Chan SP; Fuller ZJ; Demas JN; DeGraff BA
    Anal Chem; 2001 Sep; 73(18):4486-90. PubMed ID: 11575797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Can we use rapid lifetime determination for fast, fluorescence lifetime based, metabolic imaging? Precision and accuracy of double-exponential decay measurements with low total counts.
    Silva SF; Domingues JP; Morgado AM
    PLoS One; 2019; 14(5):e0216894. PubMed ID: 31086413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of methods for rapid evaluation of lifetimes of exponential decays.
    Moore C; Chan SP; Demas JN; DeGraff BA
    Appl Spectrosc; 2004 May; 58(5):603-7. PubMed ID: 15165338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Luminescence lifetime standards for the nanosecond to microsecond range and oxygen quenching of ruthenium(II) complexes.
    Morris KJ; Roach MS; Xu W; Demas JN; DeGraff BA
    Anal Chem; 2007 Dec; 79(24):9310-4. PubMed ID: 17985845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A nomogram for deconvolution of single exponential fluorescence decays.
    Rockley MG
    Biophys J; 1980 Apr; 30(1):193-7. PubMed ID: 7260267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Abnormal behavior in Stern-Volmer luminescence quenching measurements via apparent lifetime methods.
    Payne SJ; Demas JN; Degraff BA
    Appl Spectrosc; 2009 Apr; 63(4):437-41. PubMed ID: 19366510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Precision and accuracy of the analog mean-delay method for high-speed fluorescence lifetime measurement.
    Won YJ; Han WT; Kim DY
    J Opt Soc Am A Opt Image Sci Vis; 2011 Oct; 28(10):2026-32. PubMed ID: 21979507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Error analysis of the residence time of bistable Poisson states obtained by periodic measurements.
    Lee J; Lyo IW
    Rev Sci Instrum; 2010 Jun; 81(6):063704. PubMed ID: 20590243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calibration approach for fluorescence lifetime determination for applications using time-gated detection and finite pulse width excitation.
    Keller SB; Dudley JA; Binzel K; Jasensky J; de Pedro HM; Frey EW; Urayama P
    Anal Chem; 2008 Oct; 80(20):7876-81. PubMed ID: 18798652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extraction of lifetime distributions from fluorescence decays with application to DNA-base analogues.
    Fogarty AC; Jones AC; Camp PJ
    Phys Chem Chem Phys; 2011 Mar; 13(9):3819-30. PubMed ID: 21212896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature Compensation of Oxygen Sensing Films Utilizing a Dynamic Dual Lifetime Calculation Technique.
    Collier BB; McShane MJ
    IEEE Sens J; 2014 Aug; 14(8):2755-2764. PubMed ID: 26566384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative comparison of polar approach versus fitting method in time domain FLIM image analysis.
    Leray A; Spriet C; Trinel D; Blossey R; Usson Y; Héliot L
    Cytometry A; 2011 Feb; 79(2):149-58. PubMed ID: 21265008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal binning of time-correlated single photon counting data improves exponential decay fits and imaging speed.
    Walsh AJ; Sharick JT; Skala MC; Beier HT
    Biomed Opt Express; 2016 Apr; 7(4):1385-99. PubMed ID: 27446663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid-scanning frequency-domain fluorometer with picosecond time resolution.
    Bright FV; Hieftje GM
    Appl Opt; 1987 Sep; 26(17):3526-9. PubMed ID: 20490098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous dual-frequency phase-sensitive flow cytometric measurements for rapid identification of heterogeneous fluorescence decays in fluorochrome-labeled cells and particles.
    Deka C; Cram LS; Habbersett R; Martin JC; Sklar LA; Steinkamp JA
    Cytometry; 1995 Dec; 21(4):318-28. PubMed ID: 8608729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new approach to interpretation of heterogeneity of fluorescence decay: effect of induced tautomeric shift and enzyme-->ligand fluorescence resonance energy transfer.
    Wlodarczyk J; Kierdaszuk B
    Biophys Chem; 2006 Sep; 123(2-3):146-53. PubMed ID: 16765509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The application of fluorescence lifetime readouts in high-throughput screening.
    Moger J; Gribbon P; Sewing A; Winlove CP
    J Biomol Screen; 2006 Oct; 11(7):765-72. PubMed ID: 16943393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frequency domain analysis for fluorescence recovery after photobleaching.
    Wirth MJ
    Appl Spectrosc; 2006 Jan; 60(1):89-94. PubMed ID: 16454918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.