These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 21662772)

  • 21. SAW Chemical Array Device Coated with Polymeric Sensing Materials for the Detection of Nerve Agents.
    Kim J; Park H; Kim J; Seo BI; Kim JH
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33302508
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of liquid-phase chemical detection using guided shear horizontal-surface acoustic wave sensors.
    Li Z; Jones Y; Hossenlopp J; Cernosek R; Josse F
    Anal Chem; 2005 Jul; 77(14):4595-603. PubMed ID: 16013878
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Vapor sensing using polymer/carbon black composites in the percolative conduction regime.
    Sisk BC; Lewis NS
    Langmuir; 2006 Aug; 22(18):7928-35. PubMed ID: 16922586
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Acoustic wave-based sensors using mode conversion in periodic gratings.
    Bender F; Dahint R; Josse F
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(6):1497-503. PubMed ID: 18244346
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Different Sensitive Behaviors of a Hydrogen-Bond Acidic Polymer-Coated SAW Sensor for Chemical Warfare Agents and Their Simulants.
    Long Y; Wang Y; Du X; Cheng L; Wu P; Jiang Y
    Sensors (Basel); 2015 Jul; 15(8):18302-14. PubMed ID: 26225975
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Use of linear solvation energy relationships for modeling responses from polymer-coated acoustic-wave vapor sensors.
    Hierlemann A; Zellers ET; Ricco AJ
    Anal Chem; 2001 Jul; 73(14):3458-66. PubMed ID: 11476248
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vacuum-deposited wave-guiding layers on STW resonators based on LiTaO(3) substrate as love wave sensors for chemical and biochemical sensing in liquids.
    Barié N; Stahl U; Rapp M
    Ultrasonics; 2010 May; 50(6):606-12. PubMed ID: 20092864
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of polymeric surface acoustic wave sensor coatings and semiempirical models of sensor responses to organic vapors.
    Patrash SJ; Zellers ET
    Anal Chem; 1993 Aug; 65(15):2055-66. PubMed ID: 8372969
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adaptation and evaluation of a personal electronic nose for selective multivapor analysis.
    Hsieh MD; Zellers ET
    J Occup Environ Hyg; 2004 Mar; 1(3):149-60. PubMed ID: 15204872
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Use of spatiotemporal response information from sorption-based sensor arrays to identify and quantify the composition of analyte mixtures.
    Woodka MD; Brunschwig BS; Lewis NS
    Langmuir; 2007 Dec; 23(26):13232-41. PubMed ID: 18001074
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rapid, sensitive, and multiplexed on-chip optical sensors for micro-gas chromatography.
    Reddy K; Guo Y; Liu J; Lee W; Oo MK; Fan X
    Lab Chip; 2012 Mar; 12(5):901-5. PubMed ID: 22245960
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pore-bridging poly(dimethylsiloxane) membranes as selective interfaces for vapor-phase chemical sensing.
    Perez GP; Crooks RM
    Anal Chem; 2004 Jul; 76(14):4137-42. PubMed ID: 15253654
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Selective vapor sorption by polymers and cavitands on acoustic wave sensors:  is this molecular recognition?
    Grate JW; Patrash SJ; Abraham MH; Du CM
    Anal Chem; 1996 Mar; 68(5):913-7. PubMed ID: 21619189
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multifunctional chemical vapor sensors of aligned carbon nanotube and polymer composites.
    Wei C; Dai L; Roy A; Tolle TB
    J Am Chem Soc; 2006 Feb; 128(5):1412-3. PubMed ID: 16448087
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Graphene Nanoplatelet-Polymer Chemiresistive Sensor Arrays for the Detection and Discrimination of Chemical Warfare Agent Simulants.
    Wiederoder MS; Nallon EC; Weiss M; McGraw SK; Schnee VP; Bright CJ; Polcha MP; Paffenroth R; Uzarski JR
    ACS Sens; 2017 Nov; 2(11):1669-1678. PubMed ID: 29019400
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Research on the interaction of hydrogen-bond acidic polymer sensitive sensor materials with chemical warfare agents simulants by inverse gas chromatography.
    Yang L; Han Q; Cao S; Huang F; Qin M; Guo C; Ding M
    Sensors (Basel); 2015 Jun; 15(6):12884-90. PubMed ID: 26043177
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecularly imprinted polymer sensor arrays.
    Shimizu KD; Stephenson CJ
    Curr Opin Chem Biol; 2010 Dec; 14(6):743-50. PubMed ID: 20685156
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A passive wireless hydrogen surface acoustic wave sensor based on Pt-coated ZnO nanorods.
    Huang YS; Chen YY; Wu TT
    Nanotechnology; 2010 Mar; 21(9):095503. PubMed ID: 20139488
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A room temperature surface acoustic wave hydrogen sensor with Pt coated ZnO nanorods.
    Huang FC; Chen YY; Wu TT
    Nanotechnology; 2009 Feb; 20(6):065501. PubMed ID: 19417386
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differentiation of red wines using an electronic nose based on surface acoustic wave devices.
    García M; Fernández MJ; Fontecha JL; Lozano J; Santos JP; Aleixandre M; Sayago I; Gutiérrez J; Horrillo MC
    Talanta; 2006 Feb; 68(4):1162-5. PubMed ID: 18970446
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.