These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 21662953)
1. Geometrical model for the retention of fullerenes in high-performance liquid chromatography. Guillaume YC; Peyrin E Anal Chem; 1999 Apr; 71(7):1326-31. PubMed ID: 21662953 [TBL] [Abstract][Full Text] [Related]
2. Sucrose dependence of solute retention on human serum albumin stationary phase: hydrophobic effect and surface tension considerations. Peyrin E; Guillaume YC; Morin N; Guinchard C Anal Chem; 1998 Jul; 70(14):2812-8. PubMed ID: 9684542 [TBL] [Abstract][Full Text] [Related]
3. A humic acid stationary phase for the high performance liquid chromatography separation of buckminsterfullerenes: theoretical and practical aspects. Casadei N; Thomassin M; Guillaume YC; André C Anal Chim Acta; 2007 Apr; 588(2):268-73. PubMed ID: 17386820 [TBL] [Abstract][Full Text] [Related]
4. Effect of phase ratio on van't Hoff analysis in reversed-phase liquid chromatography, and phase-ratio-independent estimation of transfer enthalpy. Chester TL; Coym JW J Chromatogr A; 2003 Jun; 1003(1-2):101-11. PubMed ID: 12899299 [TBL] [Abstract][Full Text] [Related]
5. Insights into the retention mechanism on an octadecylsiloxane-bonded silica stationary phase (HyPURITY C18) in reversed-phase liquid chromatography. Poole CF; Kiridena W; DeKay C; Koziol WW; Rosencrans RD J Chromatogr A; 2006 May; 1115(1-2):133-41. PubMed ID: 16564531 [TBL] [Abstract][Full Text] [Related]
6. Thermodynamic studies of a zwitterionic stationary phase in hydrophilic interaction liquid chromatography. Qiu H; Armstrong DW; Berthod A J Chromatogr A; 2013 Jan; 1272():81-9. PubMed ID: 23261294 [TBL] [Abstract][Full Text] [Related]
7. Retention mechanism of a cholesterol-coated C18 stationary phase: van't Hoff and Linear Solvation Energy Relationships (LSER) approaches. Ogden PB; Coym JW J Chromatogr A; 2011 May; 1218(20):2936-43. PubMed ID: 21457990 [TBL] [Abstract][Full Text] [Related]
8. Chiral separation of enantiomers of amino acid derivatives by high-performance liquid chromatography on a norvancomycin-bonded chiral stationary phase. Ding GS; Liu Y; Cong RZ; Wang JD Talanta; 2004 Apr; 62(5):997-1003. PubMed ID: 18969391 [TBL] [Abstract][Full Text] [Related]
9. Responses of enantioselective characteristics of imidazolinone herbicides and Chiralcel OJ column to temperature variations. Lao W; Gan J J Chromatogr A; 2006 Oct; 1131(1-2):74-84. PubMed ID: 16919283 [TBL] [Abstract][Full Text] [Related]
10. Preparation and chromatographic evaluation of a cysteine-bonded zwitterionic hydrophilic interaction liquid chromatography stationary phase. Shen A; Guo Z; Cai X; Xue X; Liang X J Chromatogr A; 2012 Mar; 1228():175-82. PubMed ID: 22099229 [TBL] [Abstract][Full Text] [Related]
11. Retention mechanism of weak polar solutes in reversed phase liquid chromatography. Guillaume YC; Guinchard C Anal Chem; 1996 Sep; 68(17):2869-73. PubMed ID: 21619355 [TBL] [Abstract][Full Text] [Related]
12. High-performance liquid chromatography thermodynamic study of new potential antiepileptic compounds on a cholesterol column using isocratic elution with methanol/water and acetonitrile/water eluent systems. Flieger J; Trębacz H; Pizoń M; Kowalska A; Szczęsna A; Plech T J Sep Sci; 2017 Nov; 40(21):4176-4190. PubMed ID: 28869783 [TBL] [Abstract][Full Text] [Related]
13. Adsorption mechanisms and effect of temperature in reversed-phase liquid chromatography. meaning of the classical Van't Hoff plot in chromatography. Gritti F; Guiochon G Anal Chem; 2006 Jul; 78(13):4642-53. PubMed ID: 16808477 [TBL] [Abstract][Full Text] [Related]
14. Separation properties of novel and commercial polar stationary phases in hydrophilic interaction and reversed-phase liquid chromatography mode. Wu J; Bicker W; Lindner W J Sep Sci; 2008 May; 31(9):1492-503. PubMed ID: 18461572 [TBL] [Abstract][Full Text] [Related]
15. Simultaneous effect of pH, temperature and mobile phase composition in the chromatographic retention of ionizable compounds. Agrafiotou P; Ràfols C; Castells C; Bosch E; Rosés M J Chromatogr A; 2011 Jul; 1218(30):4995-5009. PubMed ID: 21255784 [TBL] [Abstract][Full Text] [Related]
16. Participation of Cluster Species in the Solvation Mechanism of a Weak Polar Solute in a Methanol/Water Mixture over a 0.2-0.7 Water Fraction Range: High-Performance Liquid Chromatography Study. Guillaume YC; Guinchard C Anal Chem; 1998 Feb; 70(3):608-15. PubMed ID: 21644759 [TBL] [Abstract][Full Text] [Related]
17. Effects of Mobile-Phase Composition and Temperature on the Selectivity of Poly(N-isopropylacrylamide)-Bonded Silica Gel in Reversed-Phase Liquid Chromatography. Go H; Sudo Y; Hosoya K; Ikegami T; Tanaka N Anal Chem; 1998 Oct; 70(19):4086-93. PubMed ID: 21651245 [TBL] [Abstract][Full Text] [Related]
18. Combined effects of mobile phase composition and temperature on the retention of homologous and polar test compounds on polydentate C8 column. Jandera P; Krupczyńska K; Vynuchalová K; Buszewski B J Chromatogr A; 2010 Sep; 1217(39):6052-60. PubMed ID: 20728897 [TBL] [Abstract][Full Text] [Related]
19. Multi-variable retention modelling in reversed-phase high-performance liquid chromatography based on the solvation method: a comparison between curvilinear and artificial neural network regression. D'Archivio AA; Maggi MA; Ruggieri F Anal Chim Acta; 2011 Mar; 690(1):35-46. PubMed ID: 21414434 [TBL] [Abstract][Full Text] [Related]
20. Mobile phase effects in reversed-phase liquid chromatography: a comparison of acetonitrile/water and methanol/water solvents as studied by molecular simulation. Rafferty JL; Siepmann JI; Schure MR J Chromatogr A; 2011 Apr; 1218(16):2203-13. PubMed ID: 21388628 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]