These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 21663361)

  • 61. Transition metal catalysed dehydrogenation of amine-borane fuel blends.
    Mal SS; Stephens FH; Baker RT
    Chem Commun (Camb); 2011 Mar; 47(10):2922-4. PubMed ID: 21258748
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Alkali and alkaline-earth metal amidoboranes: structure, crystal chemistry, and hydrogen storage properties.
    Wu H; Zhou W; Yildirim T
    J Am Chem Soc; 2008 Nov; 130(44):14834-9. PubMed ID: 18847204
    [TBL] [Abstract][Full Text] [Related]  

  • 63. High-capacity hydrogen storage in lithium and sodium amidoboranes.
    Xiong Z; Yong CK; Wu G; Chen P; Shaw W; Karkamkar A; Autrey T; Jones MO; Johnson SR; Edwards PP; David WI
    Nat Mater; 2008 Feb; 7(2):138-41. PubMed ID: 18157135
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Nanosizing Approach-A Case Study on the Thermal Decomposition of Hydrazine Borane.
    Abu Osman NA; Nordin NI; Tan KC; Hosri NAHA; Pei Q; Ng EP; Othman MBH; Ismail M; He T; Chua YS
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676604
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Exploration of the Dehydrogenation Pathways of Ammonia Diborane and Diammoniate of Diborane by Molecular Dynamics Simulations Using Reactive Force Fields.
    Gao P; Huang Z; Yu H
    J Phys Chem A; 2020 Mar; 124(9):1698-1704. PubMed ID: 32045237
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The dehydrogenation of ammonia-borane catalysed by dicarbonylruthenacyclic(II) complexes.
    Boulho C; Djukic JP
    Dalton Trans; 2010 Oct; 39(38):8893-905. PubMed ID: 20714618
    [TBL] [Abstract][Full Text] [Related]  

  • 67. In situ-generated PVP-stabilized palladium(0) nanocluster catalyst in hydrogen generation from the methanolysis of ammonia-borane.
    Erdoğan H; Metin O; Ozkar S
    Phys Chem Chem Phys; 2009 Nov; 11(44):10519-25. PubMed ID: 19890540
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Modified lithium borohydrides for reversible hydrogen storage.
    Au M; Jurgensen A
    J Phys Chem B; 2006 Apr; 110(13):7062-7. PubMed ID: 16571023
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Effect of curvature and chirality for hydrogen storage in single-walled carbon nanotubes: a combined ab initio and Monte Carlo investigation.
    Mpourmpakis G; Froudakis GE; Lithoxoos GP; Samios J
    J Chem Phys; 2007 Apr; 126(14):144704. PubMed ID: 17444729
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Enthalpy and entropy effects in hydrogen adsorption on carbon nanotubes.
    Efremenko I; Sheintuch M
    Langmuir; 2005 Jul; 21(14):6282-8. PubMed ID: 15982032
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Promotion of hydrogen release from ammonia borane with magnesium nitride.
    Luo J; Kang X; Fang Z; Wang P
    Dalton Trans; 2011 Jun; 40(24):6469-74. PubMed ID: 21607278
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A first-principles analysis of hydrogen interaction in Ti-doped NaAlH4 surfaces: structure and energetics.
    Liu J; Ge Q
    J Phys Chem B; 2006 Dec; 110(51):25863-8. PubMed ID: 17181233
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 74. High-pressure study of lithium amidoborane using Raman spectroscopy and insight into dihydrogen bonding absence.
    Najiba S; Chen J
    Proc Natl Acad Sci U S A; 2012 Nov; 109(47):19140-4. PubMed ID: 23115332
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Reactivity of isobutane on zeolites: a first principles study.
    Zheng X; Blowers P
    J Phys Chem A; 2006 Feb; 110(7):2455-60. PubMed ID: 16480305
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Exploring the effectiveness of different Lewis pair combinations in caged structures for the catalysis of ammonia borane dehydrogenation: a DFT study.
    Pal A; Vanka K
    Phys Chem Chem Phys; 2013 Dec; 15(48):20857-67. PubMed ID: 24196023
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Thermal averaging of the indirect nuclear spin-spin coupling constants of ammonia: the importance of the large amplitude inversion mode.
    Yachmenev A; Yurchenko SN; Paidarová I; Jensen P; Thiel W; Sauer SP
    J Chem Phys; 2010 Mar; 132(11):114305. PubMed ID: 20331295
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The formation of naphthalene, azulene, and fulvalene from cyclic C5 species in combustion: an ab initio/RRKM study of 9-H-fulvalenyl (C5H5-C5H4) radical rearrangements.
    Kislov VV; Mebel AM
    J Phys Chem A; 2007 Sep; 111(38):9532-43. PubMed ID: 17711267
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The catalytic dehydrogenation of ammonia-borane involving an unexpected hydrogen transfer to ligated carbene and subsequent carbon-hydrogen activation.
    Yang X; Hall MB
    J Am Chem Soc; 2008 Feb; 130(6):1798-9. PubMed ID: 18211066
    [No Abstract]   [Full Text] [Related]  

  • 80. An ab initio G3-type/statistical theory study of the formation of indene in combustion flames. II. The pathways originating from reactions of cyclic C5 species-cyclopentadiene and cyclopentadienyl radicals.
    Kislov VV; Mebel AM
    J Phys Chem A; 2008 Jan; 112(4):700-16. PubMed ID: 18181589
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.