BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

571 related articles for article (PubMed ID: 21663750)

  • 1. An individual-based approach to SIR epidemics in contact networks.
    Youssef M; Scoglio C
    J Theor Biol; 2011 Aug; 283(1):136-44. PubMed ID: 21663750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Network epidemic models with two levels of mixing.
    Ball F; Neal P
    Math Biosci; 2008 Mar; 212(1):69-87. PubMed ID: 18280521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonlinear model of epidemic spreading in a complex social network.
    Kosiński RA; Grabowski A
    Nonlinear Dynamics Psychol Life Sci; 2007 Oct; 11(4):435-50. PubMed ID: 17697565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The importance of location in contact networks: Describing early epidemic spread using spatial social network analysis.
    Firestone SM; Ward MP; Christley RM; Dhand NK
    Prev Vet Med; 2011 Dec; 102(3):185-95. PubMed ID: 21852007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deterministic epidemic models on contact networks: correlations and unbiological terms.
    Sharkey KJ
    Theor Popul Biol; 2011 Jun; 79(4):115-29. PubMed ID: 21354193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The impact of nodes of information dissemination on epidemic spreading in dynamic multiplex networks.
    Feng M; Li X; Li Y; Li Q
    Chaos; 2023 Apr; 33(4):. PubMed ID: 37097954
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of network clustering and assortativity on epidemic behaviour.
    Badham J; Stocker R
    Theor Popul Biol; 2010 Feb; 77(1):71-5. PubMed ID: 19948179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonperturbative heterogeneous mean-field approach to epidemic spreading in complex networks.
    Gómez S; Gómez-Gardeñes J; Moreno Y; Arenas A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):036105. PubMed ID: 22060454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Bayesian MCMC approach to study transmission of influenza: application to household longitudinal data.
    Cauchemez S; Carrat F; Viboud C; Valleron AJ; Boëlle PY
    Stat Med; 2004 Nov; 23(22):3469-87. PubMed ID: 15505892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The SIS and SIR stochastic epidemic models: a maximum entropy approach.
    Artalejo JR; Lopez-Herrero MJ
    Theor Popul Biol; 2011 Dec; 80(4):256-64. PubMed ID: 22019889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of community structure on epidemic spread in an adaptive network.
    Tunc I; Shaw LB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022801. PubMed ID: 25215775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Propagation dynamics on networks featuring complex topologies.
    Hébert-Dufresne L; Noël PA; Marceau V; Allard A; Dubé LJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):036115. PubMed ID: 21230147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of a stochastic SIR epidemic on a random network incorporating household structure.
    Ball F; Sirl D; Trapman P
    Math Biosci; 2010 Apr; 224(2):53-73. PubMed ID: 20005881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impacts of clustering on interacting epidemics.
    Wang B; Cao L; Suzuki H; Aihara K
    J Theor Biol; 2012 Jul; 304():121-30. PubMed ID: 22554949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A covering-graph approach to epidemics on SIS and SIS-like networks.
    Floyd W; Kay L; Shapiro M
    Bull Math Biol; 2012 Jan; 74(1):175-89. PubMed ID: 21989564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Travelling waves in a network of SIR epidemic nodes with an approximation of weak coupling.
    Sazonov I; Kelbert M; Gravenor MB
    Math Med Biol; 2011 Jun; 28(2):165-83. PubMed ID: 20819905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exact and approximate moment closures for non-Markovian network epidemics.
    Pellis L; House T; Keeling MJ
    J Theor Biol; 2015 Oct; 382():160-77. PubMed ID: 25975999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quarantine-generated phase transition in epidemic spreading.
    Lagorio C; Dickison M; Vazquez F; Braunstein LA; Macri PA; Migueles MV; Havlin S; Stanley HE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Feb; 83(2 Pt 2):026102. PubMed ID: 21405884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human mobility and time spent at destination: impact on spatial epidemic spreading.
    Poletto C; Tizzoni M; Colizza V
    J Theor Biol; 2013 Dec; 338():41-58. PubMed ID: 24012488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimal treatment of an SIR epidemic model with time delay.
    Zaman G; Kang YH; Jung IH
    Biosystems; 2009 Oct; 98(1):43-50. PubMed ID: 19464340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.