BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 21663798)

  • 1. Riboneogenesis in yeast.
    Clasquin MF; Melamud E; Singer A; Gooding JR; Xu X; Dong A; Cui H; Campagna SR; Savchenko A; Yakunin AF; Rabinowitz JD; Caudy AA
    Cell; 2011 Jun; 145(6):969-80. PubMed ID: 21663798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Promiscuous phosphoketolase and metabolic rewiring enables novel non-oxidative glycolysis in yeast for high-yield production of acetyl-CoA derived products.
    Hellgren J; Godina A; Nielsen J; Siewers V
    Metab Eng; 2020 Nov; 62():150-160. PubMed ID: 32911054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleotide degradation and ribose salvage in yeast.
    Xu YF; Létisse F; Absalan F; Lu W; Kuznetsova E; Brown G; Caudy AA; Yakunin AF; Broach JR; Rabinowitz JD
    Mol Syst Biol; 2013 May; 9():665. PubMed ID: 23670538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deletion of PHO13, encoding haloacid dehalogenase type IIA phosphatase, results in upregulation of the pentose phosphate pathway in Saccharomyces cerevisiae.
    Kim SR; Xu H; Lesmana A; Kuzmanovic U; Au M; Florencia C; Oh EJ; Zhang G; Kim KH; Jin YS
    Appl Environ Microbiol; 2015 Mar; 81(5):1601-9. PubMed ID: 25527558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ribose-5-phosphate biosynthesis in Methanocaldococcus jannaschii occurs in the absence of a pentose-phosphate pathway.
    Grochowski LL; Xu H; White RH
    J Bacteriol; 2005 Nov; 187(21):7382-9. PubMed ID: 16237021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The significance of sedoheptulose 1,7-bisphosphate in the metabolism and regulation of the pentose pathway in liver.
    Williams JF; Blackmore PF; Arora KK
    Biochem Int; 1985 Oct; 11(4):599-610. PubMed ID: 4084320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversing the directionality of reactions between non-oxidative pentose phosphate pathway and glycolytic pathway boosts mycosporine-like amino acid production in Saccharomyces cerevisiae.
    Hengardi MT; Liang C; Madivannan K; Yang LK; Koduru L; Kanagasundaram Y; Arumugam P
    Microb Cell Fact; 2024 May; 23(1):121. PubMed ID: 38725068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic plasticity, essentiality and therapeutic potential of ribose-5-phosphate synthesis in Toxoplasma gondii.
    Guo X; Ji N; Guo Q; Wang M; Du H; Pan J; Xiao L; Gupta N; Feng Y; Xia N
    Nat Commun; 2024 Apr; 15(1):2999. PubMed ID: 38589375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing the flux of D-glucose to the pentose phosphate pathway in Saccharomyces cerevisiae for the production of D-ribose and ribitol.
    Toivari MH; Maaheimo H; Penttilä M; Ruohonen L
    Appl Microbiol Biotechnol; 2010 Jan; 85(3):731-9. PubMed ID: 19711072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deletion of PHO13 improves aerobic L-arabinose fermentation in engineered Saccharomyces cerevisiae.
    Ye S; Jeong D; Shon JC; Liu KH; Kim KH; Shin M; Kim SR
    J Ind Microbiol Biotechnol; 2019 Dec; 46(12):1725-1731. PubMed ID: 31501960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The involvement of fructose 2,6-bisphosphate in substrate cycle control in the nonoxidative stage of the pentose phosphate pathway. A phosphorus magnetic resonance spectroscopy study.
    Belyaeva NF; Golubev MA; Grigorovich JA; Dubinsky ZV; Semenova NA; Pitkänen E; Korovkin BF
    Experientia; 1994 Aug; 50(8):780-4. PubMed ID: 8070536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cells overexpressing fructose-2,6-bisphosphatase showed enhanced pentose phosphate pathway flux and resistance to oxidative stress.
    Boada J; Roig T; Perez X; Gamez A; Bartrons R; Cascante M; Bermúdez J
    FEBS Lett; 2000 Sep; 480(2-3):261-4. PubMed ID: 11034341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the role of GAPDH isoenzymes during pentose fermentation in engineered Saccharomyces cerevisiae.
    Linck A; Vu XK; Essl C; Hiesl C; Boles E; Oreb M
    FEMS Yeast Res; 2014 May; 14(3):389-98. PubMed ID: 24456572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A conserved phosphatase destroys toxic glycolytic side products in mammals and yeast.
    Collard F; Baldin F; Gerin I; Bolsée J; Noël G; Graff J; Veiga-da-Cunha M; Stroobant V; Vertommen D; Houddane A; Rider MH; Linster CL; Van Schaftingen E; Bommer GT
    Nat Chem Biol; 2016 Aug; 12(8):601-7. PubMed ID: 27294321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of Saccharomyces cerevisiae for conversion of D-glucose to xylitol and other five-carbon sugars and sugar alcohols.
    Toivari MH; Ruohonen L; Miasnikov AN; Richard P; Penttilä M
    Appl Environ Microbiol; 2007 Sep; 73(17):5471-6. PubMed ID: 17630301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of photosynthetic carbon metabolism. The effect of inorganic phosphate on stromal sedoheptulose-1,7-bisphosphatase.
    Woodrow IE; Murphy DJ; Walker DA
    Eur J Biochem; 1983 Apr; 132(1):121-3. PubMed ID: 6301819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae.
    Hasunuma T; Sanda T; Yamada R; Yoshimura K; Ishii J; Kondo A
    Microb Cell Fact; 2011 Jan; 10(1):2. PubMed ID: 21219616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substrate inhibition of transketolase.
    Solovjeva ON; Kovina MV; Kochetov GA
    Biochim Biophys Acta; 2016 Mar; 1864(3):280-282. PubMed ID: 26708478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The pentose phosphate pathway of glucose metabolism. Enzyme profiles and transient and steady-state content of intermediates of alternative pathways of glucose metabolism in Krebs ascites cells.
    Gumaa KA; McLean P
    Biochem J; 1969 Dec; 115(5):1009-29. PubMed ID: 5360673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-oxidative synthesis of pentose 5-phosphate from hexose 6-phosphate and triose phosphate by the L-type pentose pathway.
    Williams JF; Blackmore PF
    Int J Biochem; 1983; 15(6):797-816. PubMed ID: 6862092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.