BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

594 related articles for article (PubMed ID: 21664258)

  • 1. Reelin deficiency causes specific defects in the molecular composition of the synapses in the adult brain.
    Ventruti A; Kazdoba TM; Niu S; D'Arcangelo G
    Neuroscience; 2011 Aug; 189():32-42. PubMed ID: 21664258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reelin signaling facilitates maturation of CA1 glutamatergic synapses.
    Qiu S; Weeber EJ
    J Neurophysiol; 2007 Mar; 97(3):2312-21. PubMed ID: 17229826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reelin in the extracellular matrix and dendritic spines of the cortex and hippocampus: a comparison between wild type and heterozygous reeler mice by immunoelectron microscopy.
    Pappas GD; Kriho V; Pesold C
    J Neurocytol; 2001 May; 30(5):413-25. PubMed ID: 11951052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrity of Cajal-Retzius cells in the reeler-mouse hippocampus.
    Anstötz M; Karsak M; Rune GM
    Hippocampus; 2019 Jun; 29(6):550-565. PubMed ID: 30394609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ndel1 and Reelin Maintain Postnatal CA1 Hippocampus Integrity.
    Jiang Y; Gavrilovici C; Chansard M; Liu RH; Kiroski I; Parsons K; Park SK; Teskey GC; Rho JM; Nguyen MD
    J Neurosci; 2016 Jun; 36(24):6538-52. PubMed ID: 27307241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reelin, an extracellular matrix protein linked to early onset psychiatric diseases, drives postnatal development of the prefrontal cortex via GluN2B-NMDARs and the mTOR pathway.
    Iafrati J; Orejarena MJ; Lassalle O; Bouamrane L; Gonzalez-Campo C; Chavis P
    Mol Psychiatry; 2014 Apr; 19(4):417-26. PubMed ID: 23752244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NMDA-receptor proteins are upregulated in the hippocampus of postnatal heterozygous reeler mice.
    Isosaka T; Hattori K; Yagi T
    Brain Res; 2006 Feb; 1073-1074():11-9. PubMed ID: 16438943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reelin supplementation recovers sensorimotor gating, synaptic plasticity and associative learning deficits in the heterozygous reeler mouse.
    Rogers JT; Zhao L; Trotter JH; Rusiana I; Peters MM; Li Q; Donaldson E; Banko JL; Keenoy KE; Rebeck GW; Hoe HS; D'Arcangelo G; Weeber EJ
    J Psychopharmacol; 2013 Apr; 27(4):386-95. PubMed ID: 23104248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role for Reelin in neurotransmitter release.
    Hellwig S; Hack I; Kowalski J; Brunne B; Jarowyj J; Unger A; Bock HH; Junghans D; Frotscher M
    J Neurosci; 2011 Feb; 31(7):2352-60. PubMed ID: 21325502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interfering of the Reelin/ApoER2/PSD95 Signaling Axis Reactivates Dendritogenesis of Mature Hippocampal Neurons.
    Ampuero E; Jury N; Härtel S; Marzolo MP; van Zundert B
    J Cell Physiol; 2017 May; 232(5):1187-1199. PubMed ID: 27653801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Altered N-methyl-D-aspartate receptor function in reelin heterozygous mice: male-female differences and comparison with dopaminergic activity.
    van den Buuse M; Halley P; Hill R; Labots M; Martin S
    Prog Neuropsychopharmacol Biol Psychiatry; 2012 Jun; 37(2):237-46. PubMed ID: 22361156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Reelin signaling pathway promotes dendritic spine development in hippocampal neurons.
    Niu S; Yabut O; D'Arcangelo G
    J Neurosci; 2008 Oct; 28(41):10339-48. PubMed ID: 18842893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of cognitive function in the heterozygous reeler mouse.
    Krueger DD; Howell JL; Hebert BF; Olausson P; Taylor JR; Nairn AC
    Psychopharmacology (Berl); 2006 Nov; 189(1):95-104. PubMed ID: 16977475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rescue of the reeler phenotype in the dentate gyrus by wild-type coculture is mediated by lipoprotein receptors for Reelin and Disabled 1.
    Zhao S; Chai X; Bock HH; Brunne B; Förster E; Frotscher M
    J Comp Neurol; 2006 Mar; 495(1):1-9. PubMed ID: 16432903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dendritic spine hypoplasticity and downregulation of reelin and GABAergic tone in schizophrenia vulnerability.
    Costa E; Davis J; Grayson DR; Guidotti A; Pappas GD; Pesold C
    Neurobiol Dis; 2001 Oct; 8(5):723-42. PubMed ID: 11592844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Layer 6 cortical neurons require Reelin-Dab1 signaling for cellular orientation, Golgi deployment, and directed neurite growth into the marginal zone.
    O'Dell RS; Ustine CJ; Cameron DA; Lawless SM; Williams RM; Zipfel WR; Olson EC
    Neural Dev; 2012 Jul; 7():25. PubMed ID: 22770513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Altered speeds and trajectories of neurons migrating in the ventricular and subventricular zones of the reeler neocortex.
    Britto JM; Tait KJ; Johnston LA; Hammond VE; Kalloniatis M; Tan SS
    Cereb Cortex; 2011 May; 21(5):1018-27. PubMed ID: 20847150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential reelin-induced enhancement of NMDA and AMPA receptor activity in the adult hippocampus.
    Qiu S; Zhao LF; Korwek KM; Weeber EJ
    J Neurosci; 2006 Dec; 26(50):12943-55. PubMed ID: 17167084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reelin deficiency leads to aberrant lipid composition in mouse brain.
    Mizukami T; Ikeda K; Shimanaka Y; Korogi K; Zhou C; Takase H; Tsuiji H; Kono N; Kohno T; Arai H; Arita M; Hattori M
    Biochem Biophys Res Commun; 2018 Oct; 505(1):81-86. PubMed ID: 30241938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell-type-specific consequences of Reelin deficiency in the mouse neocortex, hippocampus, and amygdala.
    Boyle MP; Bernard A; Thompson CL; Ng L; Boe A; Mortrud M; Hawrylycz MJ; Jones AR; Hevner RF; Lein ES
    J Comp Neurol; 2011 Aug; 519(11):2061-89. PubMed ID: 21491433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.