BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 21664303)

  • 1. Structure-process-property relationship of the polar graphene oxide-mediated cellular response and stimulated growth of osteoblasts on hybrid chitosan network structure nanocomposite scaffolds.
    Depan D; Girase B; Shah JS; Misra RD
    Acta Biomater; 2011 Sep; 7(9):3432-45. PubMed ID: 21664303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication and characterization of graphene hydrogel via hydrothermal approach as a scaffold for preliminary study of cell growth.
    Lim HN; Huang NM; Lim SS; Harrison I; Chia CH
    Int J Nanomedicine; 2011; 6():1817-23. PubMed ID: 21931479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nano-graphene oxide/polyurethane nanofibers: mechanically flexible and myogenic stimulating matrix for skeletal tissue engineering.
    Jo SB; Erdenebileg U; Dashnyam K; Jin GZ; Cha JR; El-Fiqi A; Knowles JC; Patel KD; Lee HH; Lee JH; Kim HW
    J Tissue Eng; 2020; 11():2041731419900424. PubMed ID: 32076499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphene oxide from silk cocoon: a novel magnetic fluorophore for multi-photon imaging.
    Roy M; Kusurkar TS; Maurya SK; Meena SK; Singh SK; Sethy N; Bhargava K; Sharma RK; Goswami D; Sarkar S; Das M
    3 Biotech; 2014 Feb; 4(1):67-75. PubMed ID: 28324464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro cytocompatibility evaluation of chitosan/graphene oxide 3D scaffold composites designed for bone tissue engineering.
    Dinescu S; Ionita M; Pandele AM; Galateanu B; Iovu H; Ardelean A; Costache M; Hermenean A
    Biomed Mater Eng; 2014; 24(6):2249-56. PubMed ID: 25226924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Progress in the application of graphene and its derivatives to osteogenesis.
    Guo J; Cao G; Wei S; Han Y; Xu P
    Heliyon; 2023 Nov; 9(11):e21872. PubMed ID: 38034743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene Oxide-Functionalized Bacterial Cellulose-Gelatin Hydrogel with Curcumin Release and Kinetics: In Vitro Biological Evaluation.
    Khan MUA; Stojanović GM; Rehman RA; Moradi AR; Rizwan M; Ashammakhi N; Hasan A
    ACS Omega; 2023 Oct; 8(43):40024-40035. PubMed ID: 37929099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D-printed scaffolds with 2D hetero-nanostructures and immunomodulatory cytokines provide pro-healing microenvironment for enhanced bone regeneration.
    Liu X; Gaihre B; Park S; Li L; Dashtdar B; Astudillo Potes MD; Terzic A; Elder BD; Lu L
    Bioact Mater; 2023 Sep; 27():216-230. PubMed ID: 37122896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Short Review on Nanostructured Carbon Containing Biopolymer Derived Composites for Tissue Engineering Applications.
    Bartoli M; Piatti E; Tagliaferro A
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and Functionalization of Graphene Materials for Biomedical Applications: Recent Advances, Challenges, and Perspectives.
    Xiao Y; Pang YX; Yan Y; Qian P; Zhao H; Manickam S; Wu T; Pang CH
    Adv Sci (Weinh); 2023 Mar; 10(9):e2205292. PubMed ID: 36658693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antiviral role of nanomaterials: a material scientist's perspective.
    Aanish Ali M; Rehman N; Park TJ; Basit MA
    RSC Adv; 2022 Dec; 13(1):47-79. PubMed ID: 36605642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomimetic chitosan with biocomposite nanomaterials for bone tissue repair and regeneration.
    Kim SK; Murugan SS; Dalavi PA; Gupta S; Anil S; Seong GH; Venkatesan J
    Beilstein J Nanotechnol; 2022; 13():1051-1067. PubMed ID: 36247529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chitosan-Based Scaffolds for Facilitated Endogenous Bone Re-Generation.
    Zhao Y; Zhao S; Ma Z; Ding C; Chen J; Li J
    Pharmaceuticals (Basel); 2022 Aug; 15(8):. PubMed ID: 36015171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fighting Antibiotic-Resistant Bacterial Infections by Surface Biofunctionalization of 3D-Printed Porous Titanium Implants with Reduced Graphene Oxide and Silver Nanoparticles.
    San H; Paresoglou M; Minneboo M; van Hengel IAJ; Yilmaz A; Gonzalez-Garcia Y; Fluit AC; Hagedoorn PL; Fratila-Apachitei LE; Apachitei I; Zadpoor AA
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption of aniline from aqueous solution using graphene oxide-modified attapulgite composites.
    Deng Q; Chen C; Lei Q; Liang J; Zhang T; Jiang J
    RSC Adv; 2018 Jun; 8(41):23382-23389. PubMed ID: 35540137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of Graphene-Based Materials in Bone Tissue Engineaering.
    Pan X; Cheng D; Ruan C; Hong Y; Lin C
    Glob Chall; 2022 Feb; 6(2):2100107. PubMed ID: 35140982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scaffold-Free Spheroids with Two-Dimensional Heteronano-Layers (2DHNL) Enabling Stem Cell and Osteogenic Factor Codelivery for Bone Repair.
    Liu X; Li L; Gaihre B; Park S; Li Y; Terzic A; Elder BD; Lu L
    ACS Nano; 2022 Feb; 16(2):2741-2755. PubMed ID: 35072461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene-Based Scaffolds for Regenerative Medicine.
    Bellet P; Gasparotto M; Pressi S; Fortunato A; Scapin G; Mba M; Menna E; Filippini F
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33562559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multi-scale porous scaffold fabricated by a combined additive manufacturing and chemical etching process for bone tissue engineering.
    Shuai C; Yang Y; Feng P; Peng S; Guo W; Min A; Gao C
    Int J Bioprint; 2018; 4(2):133. PubMed ID: 33102914
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.