These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 21664303)
1. Structure-process-property relationship of the polar graphene oxide-mediated cellular response and stimulated growth of osteoblasts on hybrid chitosan network structure nanocomposite scaffolds. Depan D; Girase B; Shah JS; Misra RD Acta Biomater; 2011 Sep; 7(9):3432-45. PubMed ID: 21664303 [TBL] [Abstract][Full Text] [Related]
2. Organic/inorganic hybrid network structure nanocomposite scaffolds based on grafted chitosan for tissue engineering. Depan D; Surya PK; Girase B; Misra RD Acta Biomater; 2011 May; 7(5):2163-75. PubMed ID: 21284959 [TBL] [Abstract][Full Text] [Related]
3. Processing-structure-functional property relationship in organic-inorganic nanostructured scaffolds for bone-tissue engineering: the response of preosteoblasts. Depan D; Misra RD J Biomed Mater Res A; 2012 Nov; 100(11):3080-91. PubMed ID: 22733690 [TBL] [Abstract][Full Text] [Related]
4. Functionalization of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds via surface heparinization for bone tissue engineering. Jiang T; Khan Y; Nair LS; Abdel-Fattah WI; Laurencin CT J Biomed Mater Res A; 2010 Jun; 93(3):1193-208. PubMed ID: 19777575 [TBL] [Abstract][Full Text] [Related]
5. [A study on nano-hydroxyapatite-chitosan scaffold for bone tissue engineering]. Wang X; Liu L; Zhang Q Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Feb; 21(2):120-4. PubMed ID: 17357456 [TBL] [Abstract][Full Text] [Related]
6. Chitosan-gelatin scaffolds for tissue engineering: physico-chemical properties and biological response of buffalo embryonic stem cells and transfectant of GFP-buffalo embryonic stem cells. Thein-Han WW; Saikhun J; Pholpramoo C; Misra RD; Kitiyanant Y Acta Biomater; 2009 Nov; 5(9):3453-66. PubMed ID: 19460465 [TBL] [Abstract][Full Text] [Related]
8. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410 [TBL] [Abstract][Full Text] [Related]
9. Effects of substitution degree of photoreactive groups on the properties of UV-fabricated chitosan scaffold. Ling K; Zheng F; Li J; Tang R; Huang J; Xu Y; Zheng H; Chen J J Biomed Mater Res A; 2008 Oct; 87(1):52-61. PubMed ID: 18080310 [TBL] [Abstract][Full Text] [Related]
10. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration. Venugopal JR; Low S; Choon AT; Kumar AB; Ramakrishna S Artif Organs; 2008 May; 32(5):388-97. PubMed ID: 18471168 [TBL] [Abstract][Full Text] [Related]
11. Graphene Oxide-A Tool for the Preparation of Chemically Crosslinking Free Alginate-Chitosan-Collagen Scaffolds for Bone Tissue Engineering. Kolanthai E; Sindu PA; Khajuria DK; Veerla SC; Kuppuswamy D; Catalani LH; Mahapatra DR ACS Appl Mater Interfaces; 2018 Apr; 10(15):12441-12452. PubMed ID: 29589895 [TBL] [Abstract][Full Text] [Related]
12. Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin-hydroxyapatite for tissue engineering scaffolds. Kim HW; Kim HE; Salih V Biomaterials; 2005 Sep; 26(25):5221-30. PubMed ID: 15792549 [TBL] [Abstract][Full Text] [Related]
13. Improvement of porous beta-TCP scaffolds with rhBMP-2 chitosan carrier film for bone tissue application. Abarrategi A; Moreno-Vicente C; Ramos V; Aranaz I; Sanz Casado JV; López-Lacomba JL Tissue Eng Part A; 2008 Aug; 14(8):1305-19. PubMed ID: 18491953 [TBL] [Abstract][Full Text] [Related]
14. Preparation and characterization of chitosan-carbon nanotube scaffolds for bone tissue engineering. Venkatesan J; Ryu B; Sudha PN; Kim SK Int J Biol Macromol; 2012 Mar; 50(2):393-402. PubMed ID: 22234296 [TBL] [Abstract][Full Text] [Related]
15. Chitosan scaffolds containing hyaluronic acid for cartilage tissue engineering. Correia CR; Moreira-Teixeira LS; Moroni L; Reis RL; van Blitterswijk CA; Karperien M; Mano JF Tissue Eng Part C Methods; 2011 Jul; 17(7):717-30. PubMed ID: 21517692 [TBL] [Abstract][Full Text] [Related]
16. Evaluating the effect of graphene oxide PEGylation on the properties of chitosan-graphene oxide nanocomposite scaffold. Bakhtkhosh Hagh H; Unsworth LD; Olad A J Biomed Mater Res B Appl Biomater; 2022 Oct; 110(10):2353-2368. PubMed ID: 35543538 [TBL] [Abstract][Full Text] [Related]
17. Biodegradable polycaprolactone-chitosan three-dimensional scaffolds fabricated by melt stretching and multilayer deposition for bone tissue engineering: assessment of the physical properties and cellular response. Thuaksuban N; Nuntanaranont T; Pattanachot W; Suttapreyasri S; Cheung LK Biomed Mater; 2011 Feb; 6(1):015009. PubMed ID: 21205996 [TBL] [Abstract][Full Text] [Related]
18. [Proliferation and differentiation of MC 3T3-E1 cells cultured on nanohydroxyapatite/chitosan composite scaffolds]. Kong LJ; Ao Q; Xi J; Zhang L; Gong YD; Zhao NM; Zhang XF Sheng Wu Gong Cheng Xue Bao; 2007 Mar; 23(2):262-7. PubMed ID: 17460899 [TBL] [Abstract][Full Text] [Related]
19. Porous diopside (CaMgSi(2)O(6)) scaffold: A promising bioactive material for bone tissue engineering. Wu C; Ramaswamy Y; Zreiqat H Acta Biomater; 2010 Jun; 6(6):2237-45. PubMed ID: 20018260 [TBL] [Abstract][Full Text] [Related]
20. The interplay between nanostructured carbon-grafted chitosan scaffolds and protein adsorption on the cellular response of osteoblasts: structure-function property relationship. Depan D; Misra RD Acta Biomater; 2013 Apr; 9(4):6084-94. PubMed ID: 23261921 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]