These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 21664378)
1. Use of SNARF-1 to measure murine T cell proliferation in vitro and its application in a novel regulatory T cell suppression assay. Singh Y; Dyson J; Garden OA Immunol Lett; 2011 Oct; 140(1-2):21-9. PubMed ID: 21664378 [TBL] [Abstract][Full Text] [Related]
2. Tracking cell proliferation using the far red fluorescent dye SNARF-1. Magg T; Albert MH Cytometry B Clin Cytom; 2007 Nov; 72(6):458-64. PubMed ID: 17397063 [TBL] [Abstract][Full Text] [Related]
3. The use of carboxyfluorescein diacetate succinimidyl ester (CFSE) to monitor lymphocyte proliferation. Quah BJ; Parish CR J Vis Exp; 2010 Oct; (44):. PubMed ID: 20972413 [TBL] [Abstract][Full Text] [Related]
4. Use of CFSE to monitor ex vivo regulatory T-cell suppression of CD4+ and CD8+ T-cell proliferation within unseparated mononuclear cells from malignant and non-malignant human lymph node biopsies. Hilchey SP; Bernstein SH Immunol Invest; 2007; 36(5-6):629-48. PubMed ID: 18161522 [TBL] [Abstract][Full Text] [Related]
5. [Application of vital dye CFDA-SE and SNARF-1 to evaluate mixed lymphocyte reaction]. Zhao JX; Zeng YY; Liu Y; He XH Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi; 2006 May; 22(3):382-4, 387. PubMed ID: 16643806 [TBL] [Abstract][Full Text] [Related]
6. Human vascular endothelial cells stimulate a lower frequency of alloreactive CD8+ pre-CTL and induce less clonal expansion than matching B lymphoblastoid cells: development of a novel limiting dilution analysis method based on CFSE labeling of lymphocytes. Dengler TJ; Johnson DR; Pober JS J Immunol; 2001 Mar; 166(6):3846-54. PubMed ID: 11238628 [TBL] [Abstract][Full Text] [Related]
7. Demonstration of an Na+/H+ exchanger in mouse keratinocytes measured by the novel pH-sensitive fluorochrome SNARF-calcein. van Hooijdonk CA; Colbers RM; Piek J; van Erp PE Cell Prolif; 1997; 30(8-9):351-63. PubMed ID: 9501924 [TBL] [Abstract][Full Text] [Related]
8. "Pruning" of alloreactive CD4+ T cells using 5- (and 6-)carboxyfluorescein diacetate succinimidyl ester prolongs skin allograft survival. Watson D; Zhang GY; Sartor M; Alexander SI J Immunol; 2004 Dec; 173(11):6574-82. PubMed ID: 15557147 [TBL] [Abstract][Full Text] [Related]
9. Monitoring lymphocyte proliferation in vitro and in vivo with the intracellular fluorescent dye carboxyfluorescein diacetate succinimidyl ester. Quah BJ; Warren HS; Parish CR Nat Protoc; 2007; 2(9):2049-56. PubMed ID: 17853860 [TBL] [Abstract][Full Text] [Related]
10. Tolerogenic dendritic cells induce CD4+CD25hiFoxp3+ regulatory T cell differentiation from CD4+CD25-/loFoxp3- effector T cells. Huang H; Dawicki W; Zhang X; Town J; Gordon JR J Immunol; 2010 Nov; 185(9):5003-10. PubMed ID: 20870943 [TBL] [Abstract][Full Text] [Related]
11. Analysing cell division in vivo and in vitro using flow cytometric measurement of CFSE dye dilution. Lyons AB J Immunol Methods; 2000 Sep; 243(1-2):147-54. PubMed ID: 10986412 [TBL] [Abstract][Full Text] [Related]
12. Multiparameter flow cytometric approach for simultaneous evaluation of T lymphocyte-endothelial cell interactions. Krupnick AS; Kreisel D; Szeto WY; Popma SH; Amin KM; Moore JS; Rosengard BR Cytometry; 2001 Oct; 46(5):271-80. PubMed ID: 11746102 [TBL] [Abstract][Full Text] [Related]
13. New and improved methods for measuring lymphocyte proliferation in vitro and in vivo using CFSE-like fluorescent dyes. Quah BJ; Parish CR J Immunol Methods; 2012 May; 379(1-2):1-14. PubMed ID: 22370428 [TBL] [Abstract][Full Text] [Related]
14. Quantifying lymphocyte kinetics in vivo using carboxyfluorescein diacetate succinimidyl ester (CFSE). Asquith B; Debacq C; Florins A; Gillet N; Sanchez-Alcaraz T; Mosley A; Willems L Proc Biol Sci; 2006 May; 273(1590):1165-71. PubMed ID: 16600897 [TBL] [Abstract][Full Text] [Related]
15. Carboxyfluorescein diacetate succinimidyl ester and the virgin lymphocyte: a marriage made in heaven. Fazekas de St Groth B; Smith AL; Koh WP; Girgis L; Cook MC; Bertolino P Immunol Cell Biol; 1999 Dec; 77(6):530-8. PubMed ID: 10571674 [TBL] [Abstract][Full Text] [Related]
16. A CFSE based assay for measuring CD4+CD25+ regulatory T cell mediated suppression of auto-antigen specific and polyclonal T cell responses. Venken K; Thewissen M; Hellings N; Somers V; Hensen K; Rummens JL; Stinissen P J Immunol Methods; 2007 Apr; 322(1-2):1-11. PubMed ID: 17368474 [TBL] [Abstract][Full Text] [Related]
17. TGF-beta1 modulates Foxp3 expression and regulatory activity in distinct CD4+ T cell subsets. Pyzik M; Piccirillo CA J Leukoc Biol; 2007 Aug; 82(2):335-46. PubMed ID: 17475784 [TBL] [Abstract][Full Text] [Related]
18. Human CD19(+)CD25(high) B regulatory cells suppress proliferation of CD4(+) T cells and enhance Foxp3 and CTLA-4 expression in T-regulatory cells. Kessel A; Haj T; Peri R; Snir A; Melamed D; Sabo E; Toubi E Autoimmun Rev; 2012 Jul; 11(9):670-7. PubMed ID: 22155204 [TBL] [Abstract][Full Text] [Related]
19. Reduced frequency and functional defects of CD4 Luo L; Zeng X; Huang Z; Luo S; Qin L; Li S Reprod Biol Endocrinol; 2020 Jun; 18(1):62. PubMed ID: 32522204 [TBL] [Abstract][Full Text] [Related]
20. CD4+Foxp3+ regulatory T cells converted by rapamycin from peripheral CD4+CD25(-) naive T cells display more potent regulatory ability in vitro. Chen JF; Gao J; Zhang D; Wang ZH; Zhu JY Chin Med J (Engl); 2010 Apr; 123(7):942-8. PubMed ID: 20497692 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]