BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 21664502)

  • 1. Bacterial tyrosinases: old enzymes with new relevance to biotechnology.
    Fairhead M; Thöny-Meyer L
    N Biotechnol; 2012 Jan; 29(2):183-91. PubMed ID: 21664502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial tyrosinases.
    Claus H; Decker H
    Syst Appl Microbiol; 2006 Jan; 29(1):3-14. PubMed ID: 16423650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular and biochemical characterization of a distinct tyrosinase involved in melanin production from Aeromonas media.
    Wan X; Chai B; Liao Y; Su Y; Ye T; Shen P; Chen X
    Appl Microbiol Biotechnol; 2009 Feb; 82(2):261-9. PubMed ID: 18931836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fungal tyrosinases: new prospects in molecular characteristics, bioengineering and biotechnological applications.
    Halaouli S; Asther M; Sigoillot JC; Hamdi M; Lomascolo A
    J Appl Microbiol; 2006 Feb; 100(2):219-32. PubMed ID: 16430498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic properties of an organic solvent-resistant tyrosinase from Streptomyces sp. REN-21 and its high-level production in E. coli.
    Ito M; Inouye K
    J Biochem; 2005 Oct; 138(4):355-62. PubMed ID: 16272129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the C-terminal extension in a bacterial tyrosinase.
    Fairhead M; Thöny-Meyer L
    FEBS J; 2010 May; 277(9):2083-95. PubMed ID: 20345903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the characteristics of fungal and plant tyrosinases.
    Selinheimo E; NiEidhin D; Steffensen C; Nielsen J; Lomascolo A; Halaouli S; Record E; O'Beirne D; Buchert J; Kruus K
    J Biotechnol; 2007 Jul; 130(4):471-80. PubMed ID: 17602775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper-O2 reactivity of tyrosinase models towards external monophenolic substrates: molecular mechanism and comparison with the enzyme.
    Rolff M; Schottenheim J; Decker H; Tuczek F
    Chem Soc Rev; 2011 Jul; 40(7):4077-98. PubMed ID: 21416076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new phenol oxidase produced during melanogenesis and encystment stage in the nitrogen-fixing soil bacterium Azotobacter chroococcum.
    Herter S; Schmidt M; Thompson ML; Mikolasch A; Schauer F
    Appl Microbiol Biotechnol; 2011 May; 90(3):1037-49. PubMed ID: 21327414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Copper-Oxygen Dynamics in the Tyrosinase Mechanism.
    Fujieda N; Umakoshi K; Ochi Y; Nishikawa Y; Yanagisawa S; Kubo M; Kurisu G; Itoh S
    Angew Chem Int Ed Engl; 2020 Aug; 59(32):13385-13390. PubMed ID: 32356371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel method for the immobilization of tyrosinase to enhance stability.
    Sharma NM; Kumar S; Sawhney SK
    Biotechnol Appl Biochem; 2003 Oct; 38(Pt 2):137-41. PubMed ID: 12760744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laccase--and not tyrosinase--is the enzyme responsible for quinone methide production from 2,6-dimethoxy-4-allyl phenol.
    Sugumaran M; Bolton JL
    Arch Biochem Biophys; 1998 May; 353(2):207-12. PubMed ID: 9606954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New insights into the active site structure and catalytic mechanism of tyrosinase and its related proteins.
    Olivares C; Solano F
    Pigment Cell Melanoma Res; 2009 Dec; 22(6):750-60. PubMed ID: 19735457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification and characterization of tyrosinases from Streptomyces albus.
    Dolashki A; Gushterova A; Voelter W; Tchorbanov B
    Z Naturforsch C J Biosci; 2009; 64(9-10):724-32. PubMed ID: 19957443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovery of a new tyrosinase-like enzyme family lacking a C-terminally processed domain: production and characterization of an Aspergillus oryzae catechol oxidase.
    Gasparetti C; Faccio G; Arvas M; Buchert J; Saloheimo M; Kruus K
    Appl Microbiol Biotechnol; 2010 Mar; 86(1):213-26. PubMed ID: 19798497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Similar enzyme activation and catalysis in hemocyanins and tyrosinases.
    Decker H; Schweikardt T; Nillius D; Salzbrunn U; Jaenicke E; Tuczek F
    Gene; 2007 Aug; 398(1-2):183-91. PubMed ID: 17566671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of 3,4-dihydroxy-L-phenylalanine using novel tyrosinases from Bacillus megaterium.
    Cha GS; Mok JA; Yun CH; Park CM
    Enzyme Microb Technol; 2022 Oct; 160():110069. PubMed ID: 35696779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of the Trichoderma reesei tyrosinase 2 in Pichia pastoris: isotopic labeling and physicochemical characterization.
    Westerholm-Parvinen A; Selinheimo E; Boer H; Kalkkinen N; Mattinen M; Saloheimo M
    Protein Expr Purif; 2007 Sep; 55(1):147-58. PubMed ID: 17562370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and kinetic study of tyrosinase inhibitors found in sake lees.
    Jeon HJ; Noda M; Maruyama M; Matoba Y; Kumagai T; Sugiyama M
    J Agric Food Chem; 2006 Dec; 54(26):9827-33. PubMed ID: 17177508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of bacterial tyrosinases in organic synthesis.
    Agunbiade M; Le Roes-Hill M
    World J Microbiol Biotechnol; 2021 Nov; 38(1):2. PubMed ID: 34817696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.