BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 21664911)

  • 1. A ternary mechanism for NADH oxidation by positively charged electron acceptors, catalyzed at the flavin site in respiratory complex I.
    Birrell JA; King MS; Hirst J
    FEBS Lett; 2011 Jul; 585(14):2318-22. PubMed ID: 21664911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of NADH binding, hydride transfer, and NAD(+) dissociation during NADH oxidation by mitochondrial complex I using modified nicotinamide nucleotides.
    Birrell JA; Hirst J
    Biochemistry; 2013 Jun; 52(23):4048-55. PubMed ID: 23683271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactions of the flavin mononucleotide in complex I: a combined mechanism describes NADH oxidation coupled to the reduction of APAD+, ferricyanide, or molecular oxygen.
    Birrell JA; Yakovlev G; Hirst J
    Biochemistry; 2009 Dec; 48(50):12005-13. PubMed ID: 19899808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria.
    Kussmaul L; Hirst J
    Proc Natl Acad Sci U S A; 2006 May; 103(20):7607-12. PubMed ID: 16682634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduction of hydrophilic ubiquinones by the flavin in mitochondrial NADH:ubiquinone oxidoreductase (Complex I) and production of reactive oxygen species.
    King MS; Sharpley MS; Hirst J
    Biochemistry; 2009 Mar; 48(9):2053-62. PubMed ID: 19220002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FMN site-independent energy-linked reverse electron transfer in mitochondrial respiratory complex I.
    Gladyshev GV; Grivennikova VG; Vinogradov AD
    FEBS Lett; 2018 Jul; 592(13):2213-2219. PubMed ID: 29851085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superoxide is produced by the reduced flavin in mitochondrial complex I: a single, unified mechanism that applies during both forward and reverse electron transfer.
    Pryde KR; Hirst J
    J Biol Chem; 2011 May; 286(20):18056-65. PubMed ID: 21393237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The ins and outs of the flavin mononucleotide cofactor of respiratory complex I.
    Curtabbi A; EnrĂ­quez JA
    IUBMB Life; 2022 Jul; 74(7):629-644. PubMed ID: 35166025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of superoxide-radical by the NADH:ubiquinone oxidoreductase of heart mitochondria.
    Vinogradov AD; Grivennikova VG
    Biochemistry (Mosc); 2005 Feb; 70(2):120-7. PubMed ID: 15807648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Allosteric nucleotide-binding site in the mitochondrial NADH:ubiquinone oxidoreductase (respiratory complex I).
    Grivennikova VG; Gladyshev GV; Vinogradov AD
    FEBS Lett; 2011 Jul; 585(14):2212-6. PubMed ID: 21624365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New insights into the superoxide generation sites in bovine heart NADH-ubiquinone oxidoreductase (Complex I): the significance of protein-associated ubiquinone and the dynamic shifting of generation sites between semiflavin and semiquinone radicals.
    Ohnishi ST; Shinzawa-Itoh K; Ohta K; Yoshikawa S; Ohnishi T
    Biochim Biophys Acta; 2010 Dec; 1797(12):1901-9. PubMed ID: 20513438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Reaction of complex I of the mitochondrial electron transport chain with artificial oxidizers].
    Chenas NK
    Ukr Biokhim Zh (1978); 1989; 61(5):23-9. PubMed ID: 2511653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The flavoprotein subcomplex of complex I (NADH:ubiquinone oxidoreductase) from bovine heart mitochondria: insights into the mechanisms of NADH oxidation and NAD+ reduction from protein film voltammetry.
    Barker CD; Reda T; Hirst J
    Biochemistry; 2007 Mar; 46(11):3454-64. PubMed ID: 17323923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transhydrogenation reactions catalyzed by mitochondrial NADH-ubiquinone oxidoreductase (Complex I).
    Yakovlev G; Hirst J
    Biochemistry; 2007 Dec; 46(49):14250-8. PubMed ID: 18001142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proton-translocating NADH:ubiquinone oxidoreductase of Paracoccus denitrificans plasma membranes catalyzes FMN-independent reverse electron transfer to hexaammineruthenium (III).
    Gladyshev GV; Zharova TV; Kareyeva AV; Grivennikova VG
    Biochim Biophys Acta Bioenerg; 2023 Apr; 1864(2):148963. PubMed ID: 36842539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the reaction of decoupling ubiquinone with bovine mitochondrial respiratory complex I.
    Masuya T; Okuda K; Murai M; Miyoshi H
    Biosci Biotechnol Biochem; 2016 Aug; 80(8):1464-9. PubMed ID: 27140857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of superoxide by the mitochondrial Complex I.
    Grivennikova VG; Vinogradov AD
    Biochim Biophys Acta; 2006; 1757(5-6):553-61. PubMed ID: 16678117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reversible, electrochemical interconversion of NADH and NAD+ by the catalytic (Ilambda) subcomplex of mitochondrial NADH:ubiquinone oxidoreductase (complex I).
    Zu Y; Shannon RJ; Hirst J
    J Am Chem Soc; 2003 May; 125(20):6020-1. PubMed ID: 12785808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescent signals associated with respiratory Complex I revealed conformational changes in the catalytic site.
    Verkhovskaya M; Belevich N
    FEMS Microbiol Lett; 2019 Jun; 366(12):. PubMed ID: 31291453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial complex I.
    Hirst J
    Annu Rev Biochem; 2013; 82():551-75. PubMed ID: 23527692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.