These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 21664934)

  • 1. Flow detection of propagating waves with temporospatial correlation of activity.
    Takagaki K; Zhang C; Wu JY; Ohl FW
    J Neurosci Methods; 2011 Sep; 200(2):207-18. PubMed ID: 21664934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporally-structured acquisition of multidimensional optical imaging data facilitates visualization of elusive cortical representations in the behaving monkey.
    Omer DB; Hildesheim R; Grinvald A
    Neuroimage; 2013 Nov; 82():237-51. PubMed ID: 23689017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical-flow analysis toolbox for characterization of spatiotemporal dynamics in mesoscale optical imaging of brain activity.
    Afrashteh N; Inayat S; Mohsenvand M; Mohajerani MH
    Neuroimage; 2017 Jun; 153():58-74. PubMed ID: 28351691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linear model decomposition for voltage-sensitive dye imaging signals: application in awake behaving monkey.
    Reynaud A; Takerkart S; Masson GS; Chavane F
    Neuroimage; 2011 Jan; 54(2):1196-210. PubMed ID: 20800686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A toolbox for spatiotemporal analysis of voltage-sensitive dye imaging data in brain slices.
    Bourgeois EB; Johnson BN; McCoy AJ; Trippa L; Cohen AS; Marsh ED
    PLoS One; 2014; 9(9):e108686. PubMed ID: 25259520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voltage-sensitive dye imaging: Technique review and models.
    Chemla S; Chavane F
    J Physiol Paris; 2010; 104(1-2):40-50. PubMed ID: 19909809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent progress in voltage-sensitive dye imaging for neuroscience.
    Tsytsarev V; Liao LD; Kong KV; Liu YH; Erzurumlu RS; Olivo M; Thakor NV
    J Nanosci Nanotechnol; 2014 Jul; 14(7):4733-44. PubMed ID: 24757943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imaging the Dynamics of Mammalian Neocortical Population Activity In-Vivo.
    Grinvald A; Omer D; Naaman S; Sharon D
    Adv Exp Med Biol; 2015; 859():243-71. PubMed ID: 26238056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging the Dynamics of Neocortical Population Activity in Behaving and Freely Moving Mammals.
    Grinvald A; Petersen CC
    Adv Exp Med Biol; 2015; 859():273-96. PubMed ID: 26238057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving sensitivity of EEG-fMRI studies in epilepsy: the role of sleep-specific activity.
    Moehring J; Coropceanu D; Galka A; Moeller F; Wolff S; Boor R; Jansen O; Stephani U; Siniatchkin M
    Neurosci Lett; 2011 Nov; 505(2):211-5. PubMed ID: 22027175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Voltage-sensitive dye imaging reveals dynamic spatiotemporal properties of cortical activity after spontaneous muscle twitches in the newborn rat.
    McVea DA; Mohajerani MH; Murphy TH
    J Neurosci; 2012 Aug; 32(32):10982-94. PubMed ID: 22875932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Precise spatiotemporal patterns among visual cortical areas and their relation to visual stimulus processing.
    Ayzenshtat I; Meirovithz E; Edelman H; Werner-Reiss U; Bienenstock E; Abeles M; Slovin H
    J Neurosci; 2010 Aug; 30(33):11232-45. PubMed ID: 20720131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spiral wave dynamics in neocortex.
    Huang X; Xu W; Liang J; Takagaki K; Gao X; Wu JY
    Neuron; 2010 Dec; 68(5):978-990. PubMed ID: 21145009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatially Structured Sparse Morphological Component Separation for voltage-sensitive dye optical imaging.
    Raguet H; Monier C; Foubert L; Ferezou I; Fregnac Y; Peyré G
    J Neurosci Methods; 2016 Jan; 257():76-96. PubMed ID: 26434707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical imaging of somatosensory evoked potentials in the rat cerebral cortex after spinal cord injury.
    Lee KH; Kim UJ; Park YG; Won R; Lee H; Lee BH
    J Neurotrauma; 2011 May; 28(5):797-807. PubMed ID: 21385005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mesoscale Mapping of Mouse Cortex Reveals Frequency-Dependent Cycling between Distinct Macroscale Functional Modules.
    Vanni MP; Chan AW; Balbi M; Silasi G; Murphy TH
    J Neurosci; 2017 Aug; 37(31):7513-7533. PubMed ID: 28674167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In silico voltage-sensitive dye imaging reveals the emergent dynamics of cortical populations.
    Newton TH; Reimann MW; Abdellah M; Chevtchenko G; Muller EB; Markram H
    Nat Commun; 2021 Jun; 12(1):3630. PubMed ID: 34131136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complex propagation patterns characterize human cortical activity during slow-wave sleep.
    Hangya B; Tihanyi BT; Entz L; Fabó D; Erőss L; Wittner L; Jakus R; Varga V; Freund TF; Ulbert I
    J Neurosci; 2011 Jun; 31(24):8770-9. PubMed ID: 21677161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monitoring Population Membrane Potential Signals from Neocortex.
    Liang J; Xu W; Geng X; Wu JY
    Adv Exp Med Biol; 2015; 859():171-96. PubMed ID: 26238053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes.
    Shoham D; Glaser DE; Arieli A; Kenet T; Wijnbergen C; Toledo Y; Hildesheim R; Grinvald A
    Neuron; 1999 Dec; 24(4):791-802. PubMed ID: 10624943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.