These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 21664990)

  • 21. Protonation states and catalysis: Molecular dynamics studies of intermediates in tryptophan synthase.
    Huang YM; You W; Caulkins BG; Dunn MF; Mueller LJ; Chang CE
    Protein Sci; 2016 Jan; 25(1):166-83. PubMed ID: 26013176
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pyridoxal-5'-phosphate-dependent enzymes involved in biotin biosynthesis: structure, reaction mechanism and inhibition.
    Mann S; Ploux O
    Biochim Biophys Acta; 2011 Nov; 1814(11):1459-66. PubMed ID: 21182990
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evolutionary relationships among pyridoxal-5'-phosphate-dependent enzymes. Regio-specific alpha, beta and gamma families.
    Alexander FW; Sandmeier E; Mehta PK; Christen P
    Eur J Biochem; 1994 Feb; 219(3):953-60. PubMed ID: 8112347
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stereospecificity for the hydrogen transfer of pyridoxal enzyme reactions.
    Soda K; Yoshimura T; Esaki N
    Chem Rec; 2001; 1(5):373-84. PubMed ID: 11933244
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metal ion inhibition of nonenzymatic pyridoxal phosphate catalyzed decarboxylation and transamination.
    Zabinski RF; Toney MD
    J Am Chem Soc; 2001 Jan; 123(2):193-8. PubMed ID: 11456503
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular basis of E. coli L-threonine aldolase catalytic inactivation at low pH.
    Remesh SG; Ghatge MS; Ahmed MH; Musayev FN; Gandhi A; Chowdhury N; di Salvo ML; Kellogg GE; Contestabile R; Schirch V; Safo MK
    Biochim Biophys Acta; 2015 Apr; 1854(4):278-83. PubMed ID: 25560296
    [TBL] [Abstract][Full Text] [Related]  

  • 27. C-H activation in pyridoxal-5'-phosphate Schiff bases: the role of the imine nitrogen. A combined experimental and computational study.
    Casasnovas R; Adrover M; Ortega-Castro J; Frau J; Donoso J; Muñoz F
    J Phys Chem B; 2012 Sep; 116(35):10665-75. PubMed ID: 22845654
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aspartate aminotransferase: an old dog teaches new tricks.
    Toney MD
    Arch Biochem Biophys; 2014 Feb; 544():119-27. PubMed ID: 24121043
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pre-steady-state kinetic analysis of the reactions of alternate substrates with dialkylglycine decarboxylase.
    Sun S; Bagdassarian CK; Toney MD
    Biochemistry; 1998 Mar; 37(11):3876-85. PubMed ID: 9521708
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure of mammalian ornithine decarboxylase at 1.6 A resolution: stereochemical implications of PLP-dependent amino acid decarboxylases.
    Kern AD; Oliveira MA; Coffino P; Hackert ML
    Structure; 1999 May; 7(5):567-81. PubMed ID: 10378276
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Subunit assembly in the tryptophan synthase alpha 2 beta 2 complex. Stabilization by pyridoxal phosphate aldimine intermediates.
    Banik U; Ahmed SA; McPhie P; Miles EW
    J Biol Chem; 1995 Apr; 270(14):7944-9. PubMed ID: 7713891
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of active-site residues Tyr55 and Tyr114 in catalysis and substrate specificity of Corynebacterium diphtheriae C-S lyase.
    Astegno A; Allegrini A; Piccoli S; Giorgetti A; Dominici P
    Proteins; 2015 Jan; 83(1):78-90. PubMed ID: 25354840
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of Asp222 in the catalytic mechanism of Escherichia coli aspartate aminotransferase: the amino acid residue which enhances the function of the enzyme-bound coenzyme pyridoxal 5'-phosphate.
    Yano T; Kuramitsu S; Tanase S; Morino Y; Kagamiyama H
    Biochemistry; 1992 Jun; 31(25):5878-87. PubMed ID: 1610831
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stereochemical constraint in the evolution of pyridoxal-5'-phosphate-dependent enzymes. A hypothesis.
    Christen P; Kasper P; Gehring H; Sterk M
    FEBS Lett; 1996 Jun; 389(1):12-4. PubMed ID: 8682195
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rapid kinetic and isotopic studies on dialkylglycine decarboxylase.
    Zhou X; Jin X; Medhekar R; Chen X; Dieckmann T; Toney MD
    Biochemistry; 2001 Feb; 40(5):1367-77. PubMed ID: 11170464
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Free Energy Landscape and Proton Transfer Pathways of the Transimination Reaction at the Active site of the Serine Hydroxymethyltransferase Enzyme in Aqueous Medium.
    Soniya K; Chandra A
    J Phys Chem B; 2021 Nov; 125(43):11848-11856. PubMed ID: 34696588
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A genomic overview of pyridoxal-phosphate-dependent enzymes.
    Percudani R; Peracchi A
    EMBO Rep; 2003 Sep; 4(9):850-4. PubMed ID: 12949584
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pyridoxal-5'-phosphate-dependent catalytic antibodies.
    Gramatikova SI; Christen P
    Appl Biochem Biotechnol; 2000; 83(1-3):183-90; discussion 190-3, 297-313. PubMed ID: 10826959
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nonstereospecific transamination catalyzed by pyridoxal phosphate-dependent amino acid racemases of broad substrate specificity.
    Lim YH; Yoshimura T; Kurokawa Y; Esaki N; Soda K
    J Biol Chem; 1998 Feb; 273(7):4001-5. PubMed ID: 9461589
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Crystal structures of aminotransferases Aro8 and Aro9 from Candida albicans and structural insights into their properties.
    Kiliszek A; Rypniewski W; Rząd K; Milewski S; Gabriel I
    J Struct Biol; 2019 Mar; 205(3):26-33. PubMed ID: 30742897
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.