These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Modelling of retention of pesticides in reversed-phase high-performance liquid chromatography: quantitative structure-retention relationships based on solute quantum-chemical descriptors and experimental (solvatochromic and spin-probe) mobile phase descriptors. D'Archivio AA; Ruggieri F; Mazzeo P; Tettamanti E Anal Chim Acta; 2007 Jun; 593(2):140-51. PubMed ID: 17543600 [TBL] [Abstract][Full Text] [Related]
4. Test analytes for studies of the molecular mechanism of chromatographic separations by quantitative structure-retention relationships. Al-Haj MA; Kaliszan R; Nasal A Anal Chem; 1999 Aug; 71(15):2976-85. PubMed ID: 21662893 [TBL] [Abstract][Full Text] [Related]
5. Prediction of retention in reversed-phase liquid chromatography by means of the polarity parameter model. Lázaro E; Izquierdo P; Ràfols C; Rosés M; Bosch E J Chromatogr A; 2009 Jul; 1216(27):5214-27. PubMed ID: 19493533 [TBL] [Abstract][Full Text] [Related]
6. Evaluating the performances of quantitative structure-retention relationship models with different sets of molecular descriptors and databases for high-performance liquid chromatography predictions. Wang C; Skibic MJ; Higgs RE; Watson IA; Bui H; Wang J; Cintron JM J Chromatogr A; 2009 Jun; 1216(25):5030-8. PubMed ID: 19439313 [TBL] [Abstract][Full Text] [Related]
7. Comparison of physicochemical and gas chromatographic polarity measures for simple organic compounds. Héberger K; Zenkevich IG J Chromatogr A; 2010 Apr; 1217(17):2895-902. PubMed ID: 20236649 [TBL] [Abstract][Full Text] [Related]
8. Modeling the effects of type and concentration of organic modifiers, column type and chemical structure of analytes on the retention in reversed phase liquid chromatography using a single model. Jouyban A; Soltani S; Shayanfar A; Pappa-Louisi A J Chromatogr A; 2011 Sep; 1218(37):6454-63. PubMed ID: 21820120 [TBL] [Abstract][Full Text] [Related]
9. Importance of retention data from affinity and reverse-phase high-performance liquid chromatography on antitumor activity prediction of imidazoacridinones using QSAR strategy. Koba M; Bączek T; Marszałł MP J Pharm Biomed Anal; 2012 May; 64-65():87-93. PubMed ID: 22417615 [TBL] [Abstract][Full Text] [Related]
10. The molecular descriptor logSumAA and its alternatives in QSRR models to predict the retention of peptides. Bodzioch K; Baczek T; Kaliszan R; Vander Heyden Y J Pharm Biomed Anal; 2009 Nov; 50(4):563-9. PubMed ID: 18929455 [TBL] [Abstract][Full Text] [Related]
11. Quantitative structure-retention relationships of pesticides in reversed-phase high-performance liquid chromatography. Aschi M; D'Archivio AA; Maggi MA; Mazzeo P; Ruggieri F Anal Chim Acta; 2007 Jan; 582(2):235-42. PubMed ID: 17386498 [TBL] [Abstract][Full Text] [Related]
12. Chromatographic behaviour of ionic liquid cations in view of quantitative structure-retention relationship. Molíková M; Markuszewski MJ; Kaliszan R; Jandera P J Chromatogr A; 2010 Feb; 1217(8):1305-12. PubMed ID: 20060528 [TBL] [Abstract][Full Text] [Related]
13. Simple models for the effect of aliphatic alcohol additives on the retention in reversed-phase liquid chromatography. Nikitas P; Pappa-Louisi A; Agrafiotou P; Fasoula S J Chromatogr A; 2011 Jun; 1218(23):3616-23. PubMed ID: 21543073 [TBL] [Abstract][Full Text] [Related]
14. Reversed-phase high performance liquid chromatography (RP-HPLC) characteristics of some 9,10-anthraquinone derivatives using binary acetonitrile-water mixtures as mobile phase. Hemmateenejad B; Shamsipur M; Safavi A; Sharghi H; Amiri AA Talanta; 2008 Oct; 77(1):351-9. PubMed ID: 18804645 [TBL] [Abstract][Full Text] [Related]
16. Comparative evaluation of high-performance liquid chromatography stationary phases used for the separation of peptides in terms of quantitative structure-retention relationships. Michel M; Baczek T; Studzińska S; Bodzioch K; Jonsson T; Kaliszan R; Buszewski B J Chromatogr A; 2007 Dec; 1175(1):49-54. PubMed ID: 17980378 [TBL] [Abstract][Full Text] [Related]
17. Comparative characteristics of HPLC columns based on quantitative structure-retention relationships (QSRR) and hydrophobic-subtraction model. Baczek T; Kaliszan R; Novotná K; Jandera P J Chromatogr A; 2005 May; 1075(1-2):109-15. PubMed ID: 15974124 [TBL] [Abstract][Full Text] [Related]
18. A QSPR study of the p solute polarity parameter to estimate retention in HPLC. Bosque R; Sales J; Bosch E; Rosés M; García-Alvarez-Coque MC; Torres-Lapasió JR J Chem Inf Comput Sci; 2003; 43(4):1240-7. PubMed ID: 12870917 [TBL] [Abstract][Full Text] [Related]
19. Chromatographic models to predict the elution of ionizable analytes by organic modifier gradient in reversed phase liquid chromatography. Andrés A; Téllez A; Rosés M; Bosch E J Chromatogr A; 2012 Jul; 1247():71-80. PubMed ID: 22698867 [TBL] [Abstract][Full Text] [Related]
20. Comparison of theoretical and experimental models for characterizing solvent properties using reversed phase liquid chromatography. Liu T; Nicholls IA; Öberg T Anal Chim Acta; 2011 Sep; 702(1):37-44. PubMed ID: 21819857 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]