BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

483 related articles for article (PubMed ID: 21665352)

  • 21. Efficient removal of U(VI) from aqueous solutions using the magnetic biochar derived from the biomass of a bloom-forming cyanobacterium (Microcystis aeruginosa).
    Wang B; Li Y; Zheng J; Hu Y; Wang X; Hu B
    Chemosphere; 2020 Sep; 254():126898. PubMed ID: 32957293
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The use of sulphuric acid-carbonization products of sugar beet pulp in Cr(VI) removal.
    Altundogan HS; Bahar N; Mujde B; Tumen F
    J Hazard Mater; 2007 Jun; 144(1-2):255-64. PubMed ID: 17084024
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identifying key controls on the behavior of an acidic-U(VI) plume in the Savannah River Site using reactive transport modeling.
    Bea SA; Wainwright H; Spycher N; Faybishenko B; Hubbard SS; Denham ME
    J Contam Hydrol; 2013 Aug; 151():34-54. PubMed ID: 23707874
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar.
    Beesley L; Marmiroli M
    Environ Pollut; 2011 Feb; 159(2):474-80. PubMed ID: 21109337
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Utilization of granular activated carbon adsorber for nitrates removal from groundwater of the Cluj region.
    Moşneag SC; Popescu V; Dinescu A; Borodi G
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(8):918-24. PubMed ID: 23485242
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biochar pyrolyzed from MgAl-layered double hydroxides pre-coated ramie biomass (Boehmeria nivea (L.) Gaud.): Characterization and application for crystal violet removal.
    Tan XF; Liu YG; Gu YL; Liu SB; Zeng GM; Cai X; Hu XJ; Wang H; Liu SM; Jiang LH
    J Environ Manage; 2016 Dec; 184(Pt 1):85-93. PubMed ID: 27591848
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Physicochemical properties of biochar produced from aerobically composted swine manure and its potential use as an environmental amendment.
    Meng J; Wang L; Liu X; Wu J; Brookes PC; Xu J
    Bioresour Technol; 2013 Aug; 142():641-6. PubMed ID: 23774223
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preparation and adsorption performance of 5-azacytosine-functionalized hydrothermal carbon for selective solid-phase extraction of uranium.
    Song Q; Ma L; Liu J; Bai C; Geng J; Wang H; Li B; Wang L; Li S
    J Colloid Interface Sci; 2012 Nov; 386(1):291-9. PubMed ID: 22918045
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Removal of hexavalent chromium upon interaction with biochar under acidic conditions: mechanistic insights and application.
    Choudhary B; Paul D; Singh A; Gupta T
    Environ Sci Pollut Res Int; 2017 Jul; 24(20):16786-16797. PubMed ID: 28567678
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adsorption characteristic of U(VI) ion onto thermally activated bentonite.
    Aytas S; Yurtlu M; Donat R
    J Hazard Mater; 2009 Dec; 172(2-3):667-74. PubMed ID: 19665840
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improved performance of a biomaterial-based cation exchanger for the adsorption of uranium(VI) from water and nuclear industry wastewater.
    Anirudhan TS; Radhakrishnan PG
    J Environ Radioact; 2009 Mar; 100(3):250-7. PubMed ID: 19168265
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Solid phase extraction of uranium(VI) onto benzoylthiourea-anchored activated carbon.
    Zhao Y; Liu C; Feng M; Chen Z; Li S; Tian G; Wang L; Huang J; Li S
    J Hazard Mater; 2010 Apr; 176(1-3):119-24. PubMed ID: 19963318
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adsorption of hexavalent chromium onto alkali-modified biochar derived from Lepironia articulata: A kinetic, equilibrium, and thermodynamic study.
    Asadullah ; Kaewsichan L; Tohdee K
    Water Environ Res; 2019 Nov; 91(11):1433-1446. PubMed ID: 31063632
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sustainable Chromium (VI) Removal from Contaminated Groundwater Using Nano-Magnetite-Modified Biochar via Rapid Microwave Synthesis.
    Song X; Zhang Y; Cao N; Sun D; Zhang Z; Wang Y; Wen Y; Yang Y; Lyu T
    Molecules; 2020 Dec; 26(1):. PubMed ID: 33379377
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Uranium removal from aqueous solution using macauba endocarp-derived biochar: Effect of physical activation.
    Guilhen SN; Rovani S; Araujo LG; Tenório JAS; Mašek O
    Environ Pollut; 2021 Mar; 272():116022. PubMed ID: 33221084
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Removal of fluoride from aqueous phase by biosorption onto algal biosorbent Spirogyra sp.-IO2: sorption mechanism elucidation.
    Venkata Mohan S; Ramanaiah SV; Rajkumar B; Sarma PN
    J Hazard Mater; 2007 Mar; 141(3):465-74. PubMed ID: 16920254
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pyrolysis condition affected sulfamethazine sorption by tea waste biochars.
    Rajapaksha AU; Vithanage M; Zhang M; Ahmad M; Mohan D; Chang SX; Ok YS
    Bioresour Technol; 2014 Aug; 166():303-8. PubMed ID: 24926603
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanistic investigations of Se(VI) treatment in anoxic groundwater using granular iron and organic carbon: an EXAFS study.
    Gibson BD; Blowes DW; Lindsay MB; Ptacek CJ
    J Hazard Mater; 2012 Nov; 241-242():92-100. PubMed ID: 23040313
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Removal of nitroimidazole antibiotics from aqueous solution by adsorption/bioadsorption on activated carbon.
    Rivera-Utrilla J; Prados-Joya G; Sánchez-Polo M; Ferro-García MA; Bautista-Toledo I
    J Hazard Mater; 2009 Oct; 170(1):298-305. PubMed ID: 19464791
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Uranium(VI) adsorption and surface complexation modeling onto background sediments from the F-Area Savannah River Site.
    Dong W; Tokunaga TK; Davis JA; Wan J
    Environ Sci Technol; 2012 Feb; 46(3):1565-71. PubMed ID: 22191402
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.