BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 21665472)

  • 1. Microfluidic devices for studying chemotaxis and electrotaxis.
    Li J; Lin F
    Trends Cell Biol; 2011 Aug; 21(8):489-97. PubMed ID: 21665472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrotaxis and wound healing: experimental methods to study electric fields as a directional signal for cell migration.
    Tai G; Reid B; Cao L; Zhao M
    Methods Mol Biol; 2009; 571():77-97. PubMed ID: 19763960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A receptor-electromigration-based model for cellular electrotactic sensing and migration.
    Wu D; Lin F
    Biochem Biophys Res Commun; 2011 Aug; 411(4):695-701. PubMed ID: 21782800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activated T lymphocytes migrate toward the cathode of DC electric fields in microfluidic devices.
    Li J; Nandagopal S; Wu D; Romanuik SF; Paul K; Thomson DJ; Lin F
    Lab Chip; 2011 Apr; 11(7):1298-304. PubMed ID: 21327249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrotaxis-on-Chip to Quantify Neutrophil Migration Towards Electrochemical Gradients.
    Moarefian M; Davalos RV; Burton MD; Jones CN
    Front Immunol; 2021; 12():674727. PubMed ID: 34421891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chapter 15. A microfluidics-based method for chemoattractant gradients.
    Lin F
    Methods Enzymol; 2009; 461():333-47. PubMed ID: 19480926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent developments in microfluidics-based chemotaxis studies.
    Wu J; Wu X; Lin F
    Lab Chip; 2013 Jul; 13(13):2484-99. PubMed ID: 23712326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic device for studying cell migration in single or co-existing chemical gradients and electric fields.
    Li J; Zhu L; Zhang M; Lin F
    Biomicrofluidics; 2012 Jun; 6(2):24121-2412113. PubMed ID: 22670168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of electrotaxis on cell behaviour.
    Cortese B; Palamà IE; D'Amone S; Gigli G
    Integr Biol (Camb); 2014 Sep; 6(9):817-30. PubMed ID: 25058796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studying Electrotaxis in Microfluidic Devices.
    Sun YS
    Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28880251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mathematical model of electrotaxis in osteoblastic cells.
    Vanegas-Acosta JC; Garzón-Alvarado DA; Zwamborn AP
    Bioelectrochemistry; 2012 Dec; 88():134-43. PubMed ID: 22944767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrical dimensions in cell science.
    McCaig CD; Song B; Rajnicek AM
    J Cell Sci; 2009 Dec; 122(Pt 23):4267-76. PubMed ID: 19923270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prioritising guidance cues: directional migration induced by substratum contours and electrical gradients is controlled by a rho/cdc42 switch.
    Rajnicek AM; Foubister LE; McCaig CD
    Dev Biol; 2007 Dec; 312(1):448-60. PubMed ID: 17976566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic gradient platforms for controlling cellular behavior.
    Chung BG; Choo J
    Electrophoresis; 2010 Sep; 31(18):3014-27. PubMed ID: 20734372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell Migration in Microfluidic Devices: Invadosomes Formation in Confined Environments.
    Chi PY; Spuul P; Tseng FG; Genot E; Chou CF; Taloni A
    Adv Exp Med Biol; 2019; 1146():79-103. PubMed ID: 31612455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological applications of microfluidic gradient devices.
    Kim S; Kim HJ; Jeon NL
    Integr Biol (Camb); 2010 Nov; 2(11-12):584-603. PubMed ID: 20957276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidics for bacterial chemotaxis.
    Ahmed T; Shimizu TS; Stocker R
    Integr Biol (Camb); 2010 Nov; 2(11-12):604-29. PubMed ID: 20967322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrotaxis Studies of Lung Cancer Cells using a Multichannel Dual-electric-field Microfluidic Chip.
    Hou HS; Chang HF; Cheng JY
    J Vis Exp; 2015 Dec; (106):e53340. PubMed ID: 26780080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of direct current electric fields to cells and tissues in vitro and modulation of wound electric field in vivo.
    Song B; Gu Y; Pu J; Reid B; Zhao Z; Zhao M
    Nat Protoc; 2007; 2(6):1479-89. PubMed ID: 17545984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A microfluidics-based turning assay reveals complex growth cone responses to integrated gradients of substrate-bound ECM molecules and diffusible guidance cues.
    Joanne Wang C; Li X; Lin B; Shim S; Ming GL; Levchenko A
    Lab Chip; 2008 Feb; 8(2):227-37. PubMed ID: 18231660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.