These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 2166604)

  • 1. 1H-NMR stereospecific assignments by conformational data-base searches.
    Nilges M; Clore GM; Gronenborn AM
    Biopolymers; 1990; 29(4-5):813-22. PubMed ID: 2166604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of the three-dimensional solution structure of the C-terminal domain of cellobiohydrolase I from Trichoderma reesei. A study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing.
    Kraulis J; Clore GM; Nilges M; Jones TA; Pettersson G; Knowles J; Gronenborn AM
    Biochemistry; 1989 Sep; 28(18):7241-57. PubMed ID: 2554967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Determination of the local structure of the protein insectotoxin I5A from the scorpion Buthus eupeus from 1H-NMR spectroscopy data].
    Lomize AL; Arsen'ev AS; Maslennikov IV; Bystrov VF
    Bioorg Khim; 1990 Oct; 16(10):1310-24. PubMed ID: 2085324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Limits of NMR structure determination using variable target function calculations: ribonuclease T1, a case study.
    Pfeiffer S; Karimi-Nejad Y; Rüterjans H
    J Mol Biol; 1997 Feb; 266(2):400-23. PubMed ID: 9047372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional structure of the neurotoxin ATX Ia from Anemonia sulcata in aqueous solution determined by nuclear magnetic resonance spectroscopy.
    Widmer H; Billeter M; Wüthrich K
    Proteins; 1989; 6(4):357-71. PubMed ID: 2576133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational analysis of protein structures derived from NMR data.
    MacArthur MW; Thornton JM
    Proteins; 1993 Nov; 17(3):232-51. PubMed ID: 8272423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of a high precision structure of a novel protein, Linum usitatissimum trypsin inhibitor (LUTI), using computer-aided assignment of NOESY cross-peaks.
    Cierpicki T; Otlewski J
    J Mol Biol; 2000 Oct; 302(5):1179-92. PubMed ID: 11183783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of main chain torsion angles in proteins: prediction of NMR coupling constants for native and random coil conformations.
    Smith LJ; Bolin KA; Schwalbe H; MacArthur MW; Thornton JM; Dobson CM
    J Mol Biol; 1996 Jan; 255(3):494-506. PubMed ID: 8568893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and conformational studies by 1H- and 13C-NMR spectroscopy of a novel, sterically constrained analogue of thyrotropin-releasing hormone.
    Mapelli C; Van Halbeek H; Stammer CH
    Biopolymers; 1990 Feb; 29(2):407-22. PubMed ID: 2158826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Side-chains in native and random coil protein conformations. Analysis of NMR coupling constants and chi1 torsion angle preferences.
    West NJ; Smith LJ
    J Mol Biol; 1998 Jul; 280(5):867-77. PubMed ID: 9671556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stereospecific assignments of protein NMR resonances based on the tertiary structure and 2D/3D NOE data.
    Pristovsek P; Franzoni L
    J Comput Chem; 2006 Apr; 27(6):791-7. PubMed ID: 16526035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Determination of local conformation of proteins from 1H-NMR spectroscopy data].
    Lomize AL; Sobol' AG; Arsen'ev AS
    Bioorg Khim; 1990 Feb; 16(2):179-201. PubMed ID: 2344384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The solution conformations of ferrichrome and deferriferrichrome determined by 1H-NMR spectroscopy and computational modeling.
    Constantine KL; De Marco A; Madrid M; Brooks CL; Llinás M
    Biopolymers; 1990; 30(3-4):239-56. PubMed ID: 2279065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A general approach for determining scalar coupling constants in polypeptides and proteins.
    Montelione GT; Emerson SD; Lyons BA
    Biopolymers; 1992 Apr; 32(4):327-34. PubMed ID: 1623127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into the dynamic nature of DNA duplex structure via analysis of nuclear Overhauser effect intensities.
    Tonelli M; James TL
    Biochemistry; 1998 Aug; 37(33):11478-87. PubMed ID: 9708983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate prediction of protein torsion angles using chemical shifts and sequence homology.
    Neal S; Berjanskii M; Zhang H; Wishart DS
    Magn Reson Chem; 2006 Jul; 44 Spec No():S158-67. PubMed ID: 16823900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure determination and analysis of helix parameters in the DNA decamer d(CATGGCCATG)2 comparison of results from NMR and crystallography.
    Dornberger U; Flemming J; Fritzsche H
    J Mol Biol; 1998 Dec; 284(5):1453-63. PubMed ID: 9878363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of three-dimensional protein structures from nuclear magnetic resonance data using fragments of known structures.
    Kraulis PJ; Jones TA
    Proteins; 1987; 2(3):188-201. PubMed ID: 3447178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution NMR structure and backbone dynamics of the major cold-shock protein (CspA) from Escherichia coli: evidence for conformational dynamics in the single-stranded RNA-binding site.
    Feng W; Tejero R; Zimmerman DE; Inouye M; Montelione GT
    Biochemistry; 1998 Aug; 37(31):10881-96. PubMed ID: 9692981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solution structure and dynamics of PEC-60, a protein of the Kazal type inhibitor family, determined by nuclear magnetic resonance spectroscopy.
    Liepinsh E; Berndt KD; Sillard R; Mutt V; Otting G
    J Mol Biol; 1994 May; 239(1):137-53. PubMed ID: 8196042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.