BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 21666125)

  • 1. Influence of a subtype of inhibitory interneuron on stimulus-specific responses in visual cortex.
    Mao R; Schummers J; Knoblich U; Lacey CJ; Van Wart A; Cobos I; Kim C; Huguenard JR; Rubenstein JL; Sur M
    Cereb Cortex; 2012 Mar; 22(3):493-508. PubMed ID: 21666125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chronic reduction in inhibition reduces receptive field size in mouse auditory cortex.
    Seybold BA; Stanco A; Cho KK; Potter GB; Kim C; Sohal VS; Rubenstein JL; Schreiner CE
    Proc Natl Acad Sci U S A; 2012 Aug; 109(34):13829-34. PubMed ID: 22753490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibitory stabilization and visual coding in cortical circuits with multiple interneuron subtypes.
    Litwin-Kumar A; Rosenbaum R; Doiron B
    J Neurophysiol; 2016 Mar; 115(3):1399-409. PubMed ID: 26740531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cortical Control of Spatial Resolution by VIP+ Interneurons.
    Ayzenshtat I; Karnani MM; Jackson J; Yuste R
    J Neurosci; 2016 Nov; 36(45):11498-11509. PubMed ID: 27911754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Divisive Inhibition Prevails During Simultaneous Optogenetic Activation of All Interneuron Subtypes in Mouse Primary Visual Cortex.
    Ingram TGJ; King JL; Crowder NA
    Front Neural Circuits; 2019; 13():40. PubMed ID: 31191259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of specific interneurons improves V1 feature selectivity and visual perception.
    Lee SH; Kwan AC; Zhang S; Phoumthipphavong V; Flannery JG; Masmanidis SC; Taniguchi H; Huang ZJ; Zhang F; Boyden ES; Deisseroth K; Dan Y
    Nature; 2012 Aug; 488(7411):379-83. PubMed ID: 22878719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interneuron subtypes and orientation tuning.
    Lee SH; Kwan AC; Dan Y
    Nature; 2014 Apr; 508(7494):E1-2. PubMed ID: 24695313
    [No Abstract]   [Full Text] [Related]  

  • 8. Division and subtraction by distinct cortical inhibitory networks in vivo.
    Wilson NR; Runyan CA; Wang FL; Sur M
    Nature; 2012 Aug; 488(7411):343-8. PubMed ID: 22878717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deletion of Dlx1 results in reduced glutamatergic input to hippocampal interneurons.
    Jones DL; Howard MA; Stanco A; Rubenstein JL; Baraban SC
    J Neurophysiol; 2011 May; 105(5):1984-91. PubMed ID: 21325686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential Excitation of Distally versus Proximally Targeting Cortical Interneurons by Unitary Thalamocortical Bursts.
    Hu H; Agmon A
    J Neurosci; 2016 Jun; 36(26):6906-16. PubMed ID: 27358449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mice lacking Dlx1 show subtype-specific loss of interneurons, reduced inhibition and epilepsy.
    Cobos I; Calcagnotto ME; Vilaythong AJ; Thwin MT; Noebels JL; Baraban SC; Rubenstein JL
    Nat Neurosci; 2005 Aug; 8(8):1059-68. PubMed ID: 16007083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How inhibitory circuits in the thalamus serve vision.
    Hirsch JA; Wang X; Sommer FT; Martinez LM
    Annu Rev Neurosci; 2015 Jul; 38():309-29. PubMed ID: 26154979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Response features of parvalbumin-expressing interneurons suggest precise roles for subtypes of inhibition in visual cortex.
    Runyan CA; Schummers J; Van Wart A; Kuhlman SJ; Wilson NR; Huang ZJ; Sur M
    Neuron; 2010 Sep; 67(5):847-57. PubMed ID: 20826315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sharper orientation tuning of the extraclassical suppressive-surround due to a neuron's location in the V1 orientation map emerges late in time.
    Liu YJ; Hashemi-Nezhad M; Lyon DC
    Neuroscience; 2013 Jan; 229():100-17. PubMed ID: 23159311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emergence of orientation-selective inhibition in the primary visual cortex: a Bayes-Markov computational model.
    Shirazi MN
    Biol Cybern; 2004 Aug; 91(2):115-30. PubMed ID: 15340852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orientation selectivity of synaptic input to neurons in mouse and cat primary visual cortex.
    Tan AY; Brown BD; Scholl B; Mohanty D; Priebe NJ
    J Neurosci; 2011 Aug; 31(34):12339-50. PubMed ID: 21865476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Orientation tuning of surround suppression in lateral geniculate nucleus and primary visual cortex of cat.
    Naito T; Sadakane O; Okamoto M; Sato H
    Neuroscience; 2007 Nov; 149(4):962-75. PubMed ID: 17945429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Olig1 function is required to repress dlx1/2 and interneuron production in Mammalian brain.
    Silbereis JC; Nobuta H; Tsai HH; Heine VM; McKinsey GL; Meijer DH; Howard MA; Petryniak MA; Potter GB; Alberta JA; Baraban SC; Stiles CD; Rubenstein JL; Rowitch DH
    Neuron; 2014 Feb; 81(3):574-87. PubMed ID: 24507192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optogenetic Activation of Interneuron Subtypes Modulates Visual Contrast Responses of Mouse V1 Neurons.
    Shapiro JT; Michaud NM; King JL; Crowder NA
    Cereb Cortex; 2022 Feb; 32(5):1110-1124. PubMed ID: 34411240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experience and activity-dependent maturation of perisomatic GABAergic innervation in primary visual cortex during a postnatal critical period.
    Chattopadhyaya B; Di Cristo G; Higashiyama H; Knott GW; Kuhlman SJ; Welker E; Huang ZJ
    J Neurosci; 2004 Oct; 24(43):9598-611. PubMed ID: 15509747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.