BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 21666225)

  • 1. Mutation rates across budding yeast chromosome VI are correlated with replication timing.
    Lang GI; Murray AW
    Genome Biol Evol; 2011; 3():799-811. PubMed ID: 21666225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Form and function of topologically associating genomic domains in budding yeast.
    Eser U; Chandler-Brown D; Ay F; Straight AF; Duan Z; Noble WS; Skotheim JM
    Proc Natl Acad Sci U S A; 2017 Apr; 114(15):E3061-E3070. PubMed ID: 28348222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell-to-cell variability and robustness in S-phase duration from genome replication kinetics.
    Zhang Q; Bassetti F; Gherardi M; Lagomarsino MC
    Nucleic Acids Res; 2017 Aug; 45(14):8190-8198. PubMed ID: 28854733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid high-resolution measurement of DNA replication timing by droplet digital PCR.
    Batrakou DG; Heron ED; Nieduszynski CA
    Nucleic Acids Res; 2018 Nov; 46(19):e112. PubMed ID: 29986073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Patterns and mechanisms of ancestral histone protein inheritance in budding yeast.
    Radman-Livaja M; Verzijlbergen KF; Weiner A; van Welsem T; Friedman N; Rando OJ; van Leeuwen F
    PLoS Biol; 2011 Jun; 9(6):e1001075. PubMed ID: 21666805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Budding yeast complete DNA synthesis after chromosome segregation begins.
    Ivanova T; Maier M; Missarova A; Ziegler-Birling C; Dam M; Gomar-Alba M; Carey LB; Mendoza M
    Nat Commun; 2020 May; 11(1):2267. PubMed ID: 32385287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High Throughput Analyses of Budding Yeast ARSs Reveal New DNA Elements Capable of Conferring Centromere-Independent Plasmid Propagation.
    Hoggard T; Liachko I; Burt C; Meikle T; Jiang K; Craciun G; Dunham MJ; Fox CA
    G3 (Bethesda); 2016 Apr; 6(4):993-1012. PubMed ID: 26865697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of chromosome stability in diploid, polyploid and hybrid yeast cells.
    Kumaran R; Yang SY; Leu JY
    PLoS One; 2013; 8(7):e68094. PubMed ID: 23874507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Checkpoint proteins influence telomeric silencing and length maintenance in budding yeast.
    Longhese MP; Paciotti V; Neecke H; Lucchini G
    Genetics; 2000 Aug; 155(4):1577-91. PubMed ID: 10924458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Participation of translesion synthesis DNA polymerases in the maintenance of chromosome integrity in yeast Saccharomyces cerevisiae.
    Kochenova OV; Soshkina JV; Stepchenkova EI; Inge-Vechtomov SG; Shcherbakova PV
    Biochemistry (Mosc); 2011 Jan; 76(1):49-60. PubMed ID: 21568839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rad5 plays a major role in the cellular response to DNA damage during chromosome replication.
    Ortiz-Bazán MÁ; Gallo-Fernández M; Saugar I; Jiménez-Martín A; Vázquez MV; Tercero JA
    Cell Rep; 2014 Oct; 9(2):460-8. PubMed ID: 25310987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A model for the spatiotemporal organization of DNA replication in Saccharomyces cerevisiae.
    Spiesser TW; Klipp E; Barberis M
    Mol Genet Genomics; 2009 Jul; 282(1):25-35. PubMed ID: 19306105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Rabl configuration limits topological entanglement of chromosomes in budding yeast.
    Pouokam M; Cruz B; Burgess S; Segal MR; Vazquez M; Arsuaga J
    Sci Rep; 2019 May; 9(1):6795. PubMed ID: 31043625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The evolution of the temporal program of genome replication.
    Agier N; Delmas S; Zhang Q; Fleiss A; Jaszczyszyn Y; van Dijk E; Thermes C; Weigt M; Cosentino-Lagomarsino M; Fischer G
    Nat Commun; 2018 Jun; 9(1):2199. PubMed ID: 29875360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of replication bypass pathways in dicentric chromosome formation in budding yeast.
    Paek AL; Jones H; Kaochar S; Weinert T
    Genetics; 2010 Dec; 186(4):1161-73. PubMed ID: 20837992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A variable fork rate affects timing of origin firing and S phase dynamics in Saccharomyces cerevisiae.
    Supady A; Klipp E; Barberis M
    J Biotechnol; 2013 Oct; 168(2):174-84. PubMed ID: 23850861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The evolutionary plasticity of chromosome metabolism allows adaptation to constitutive DNA replication stress.
    Fumasoni M; Murray AW
    Elife; 2020 Feb; 9():. PubMed ID: 32043971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The nature of meiotic chromosome dynamics and recombination in budding yeast.
    Hong S; Joo JH; Yun H; Kim K
    J Microbiol; 2019 Apr; 57(4):221-231. PubMed ID: 30671743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variation of the meiotic recombination landscape and properties over a broad evolutionary distance in yeasts.
    Brion C; Legrand S; Peter J; Caradec C; Pflieger D; Hou J; Friedrich A; Llorente B; Schacherer J
    PLoS Genet; 2017 Aug; 13(8):e1006917. PubMed ID: 28763437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Centromere replication timing determines different forms of genomic instability in Saccharomyces cerevisiae checkpoint mutants during replication stress.
    Feng W; Bachant J; Collingwood D; Raghuraman MK; Brewer BJ
    Genetics; 2009 Dec; 183(4):1249-60. PubMed ID: 19805819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.