BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 21666270)

  • 21. LOMETS2: improved meta-threading server for fold-recognition and structure-based function annotation for distant-homology proteins.
    Zheng W; Zhang C; Wuyun Q; Pearce R; Li Y; Zhang Y
    Nucleic Acids Res; 2019 Jul; 47(W1):W429-W436. PubMed ID: 31081035
    [TBL] [Abstract][Full Text] [Related]  

  • 22. (PS)2-v2: template-based protein structure prediction server.
    Chen CC; Hwang JK; Yang JM
    BMC Bioinformatics; 2009 Oct; 10():366. PubMed ID: 19878598
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MSACompro: protein multiple sequence alignment using predicted secondary structure, solvent accessibility, and residue-residue contacts.
    Deng X; Cheng J
    BMC Bioinformatics; 2011 Dec; 12():472. PubMed ID: 22168237
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Real-SPINE: an integrated system of neural networks for real-value prediction of protein structural properties.
    Dor O; Zhou Y
    Proteins; 2007 Jul; 68(1):76-81. PubMed ID: 17397056
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Low-homology protein threading.
    Peng J; Xu J
    Bioinformatics; 2010 Jun; 26(12):i294-300. PubMed ID: 20529920
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessing secondary structure assignment of protein structures by using pairwise sequence-alignment benchmarks.
    Zhang W; Dunker AK; Zhou Y
    Proteins; 2008 Apr; 71(1):61-7. PubMed ID: 17932927
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predicting and improving the protein sequence alignment quality by support vector regression.
    Lee M; Jeong CS; Kim D
    BMC Bioinformatics; 2007 Dec; 8():471. PubMed ID: 18053160
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model.
    Wang S; Sun S; Li Z; Zhang R; Xu J
    PLoS Comput Biol; 2017 Jan; 13(1):e1005324. PubMed ID: 28056090
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Probabilistic multi-class multi-kernel learning: on protein fold recognition and remote homology detection.
    Damoulas T; Girolami MA
    Bioinformatics; 2008 May; 24(10):1264-70. PubMed ID: 18378524
    [TBL] [Abstract][Full Text] [Related]  

  • 30. I-TASSER server for protein 3D structure prediction.
    Zhang Y
    BMC Bioinformatics; 2008 Jan; 9():40. PubMed ID: 18215316
    [TBL] [Abstract][Full Text] [Related]  

  • 31. M4T: a comparative protein structure modeling server.
    Fernandez-Fuentes N; Madrid-Aliste CJ; Rai BK; Fajardo JE; Fiser A
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W363-8. PubMed ID: 17517764
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Protein Fold Recognition Based on Auto-Weighted Multi-View Graph Embedding Learning Model.
    Yan K; Wen J; Xu Y; Liu B
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2682-2691. PubMed ID: 32356759
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CONTSOR--a new knowledge-based fold recognition potential, based on side chain orientation and contacts between residue terminal groups.
    Vishnepolsky B; Pirtskhalava M
    Protein Sci; 2012 Jan; 21(1):134-41. PubMed ID: 22057923
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A machine learning information retrieval approach to protein fold recognition.
    Cheng J; Baldi P
    Bioinformatics; 2006 Jun; 22(12):1456-63. PubMed ID: 16547073
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fast and accurate automatic structure prediction with HHpred.
    Hildebrand A; Remmert M; Biegert A; Söding J
    Proteins; 2009; 77 Suppl 9():128-32. PubMed ID: 19626712
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DOMAC: an accurate, hybrid protein domain prediction server.
    Cheng J
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W354-6. PubMed ID: 17553833
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improving protein fold recognition by extracting fold-specific features from predicted residue-residue contacts.
    Zhu J; Zhang H; Li SC; Wang C; Kong L; Sun S; Zheng WM; Bu D
    Bioinformatics; 2017 Dec; 33(23):3749-3757. PubMed ID: 28961795
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adaptive Smith-Waterman residue match seeding for protein structural alignment.
    Topham CM; Rouquier M; Tarrat N; André I
    Proteins; 2013 Oct; 81(10):1823-39. PubMed ID: 23720362
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modeling protein loops with knowledge-based prediction of sequence-structure alignment.
    Peng HP; Yang AS
    Bioinformatics; 2007 Nov; 23(21):2836-42. PubMed ID: 17827204
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative modeling in CASP6 using consensus approach to template selection, sequence-structure alignment, and structure assessment.
    Venclovas Č; Margelevičius M
    Proteins; 2005; 61 Suppl 7():99-105. PubMed ID: 16187350
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.