These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 21666810)
1. Physiological roles of mitogen-activated-protein-kinase-activated p38-regulated/activated protein kinase. Kostenko S; Dumitriu G; Lægreid KJ; Moens U World J Biol Chem; 2011 May; 2(5):73-89. PubMed ID: 21666810 [TBL] [Abstract][Full Text] [Related]
2. Structure and function of MK5/PRAK: the loner among the mitogen-activated protein kinase-activated protein kinases. Moens U; Kostenko S Biol Chem; 2013 Sep; 394(9):1115-32. PubMed ID: 23729623 [TBL] [Abstract][Full Text] [Related]
3. Mitogen-activated protein kinase p38 and MK2, MK3 and MK5: ménage à trois or ménage à quatre? Shiryaev A; Moens U Cell Signal; 2010 Aug; 22(8):1185-92. PubMed ID: 20227494 [TBL] [Abstract][Full Text] [Related]
4. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Cargnello M; Roux PP Microbiol Mol Biol Rev; 2011 Mar; 75(1):50-83. PubMed ID: 21372320 [TBL] [Abstract][Full Text] [Related]
5. Both binding and activation of p38 mitogen-activated protein kinase (MAPK) play essential roles in regulation of the nucleocytoplasmic distribution of MAPK-activated protein kinase 5 by cellular stress. Seternes OM; Johansen B; Hegge B; Johannessen M; Keyse SM; Moens U Mol Cell Biol; 2002 Oct; 22(20):6931-45. PubMed ID: 12242275 [TBL] [Abstract][Full Text] [Related]
6. New insights into the activation, interaction partners and possible functions of MK5/PRAK. Perander M; Keyse SM; Seternes OM Front Biosci (Landmark Ed); 2016 Jan; 21(2):374-84. PubMed ID: 26709779 [TBL] [Abstract][Full Text] [Related]
7. The Role of Mitogen-Activated Protein Kinase-Activated Protein Kinases (MAPKAPKs) in Inflammation. Moens U; Kostenko S; Sveinbjørnsson B Genes (Basel); 2013 Mar; 4(2):101-33. PubMed ID: 24705157 [TBL] [Abstract][Full Text] [Related]
8. Cross-talk between protein kinase A and the MAPK-activated protein kinases RSK1 and MK5. Kostenko S; Shiryaev A; Dumitriu G; Gerits N; Moens U J Recept Signal Transduct Res; 2011 Feb; 31(1):1-9. PubMed ID: 20849292 [TBL] [Abstract][Full Text] [Related]
9. Does MK5 reconcile classical and atypical MAP kinases? Perander M; Keyse SM; Seternes OM Front Biosci; 2008 May; 13():4617-24. PubMed ID: 18508533 [TBL] [Abstract][Full Text] [Related]
10. Activation of MK5/PRAK by the atypical MAP kinase ERK3 defines a novel signal transduction pathway. Seternes OM; Mikalsen T; Johansen B; Michaelsen E; Armstrong CG; Morrice NA; Turgeon B; Meloche S; Moens U; Keyse SM EMBO J; 2004 Dec; 23(24):4780-91. PubMed ID: 15577943 [TBL] [Abstract][Full Text] [Related]
11. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Roux PP; Blenis J Microbiol Mol Biol Rev; 2004 Jun; 68(2):320-44. PubMed ID: 15187187 [TBL] [Abstract][Full Text] [Related]
12. Regulation of PRAK subcellular location by p38 MAP kinases. New L; Jiang Y; Han J Mol Biol Cell; 2003 Jun; 14(6):2603-16. PubMed ID: 12808055 [TBL] [Abstract][Full Text] [Related]
13. The Ser(186) phospho-acceptor site within ERK4 is essential for its ability to interact with and activate PRAK/MK5. Perander M; Aberg E; Johansen B; Dreyer B; Guldvik IJ; Outzen H; Keyse SM; Seternes OM Biochem J; 2008 May; 411(3):613-22. PubMed ID: 18248330 [TBL] [Abstract][Full Text] [Related]
14. Regulation of MAPK-activated protein kinase 5 activity and subcellular localization by the atypical MAPK ERK4/MAPK4. Aberg E; Perander M; Johansen B; Julien C; Meloche S; Keyse SM; Seternes OM J Biol Chem; 2006 Nov; 281(46):35499-510. PubMed ID: 16971392 [TBL] [Abstract][Full Text] [Related]
15. Determinants that control the distinct subcellular localization of p38alpha-PRAK and p38beta-PRAK complexes. Li Q; Zhang N; Zhang D; Wang Y; Lin T; Wang Y; Zhou H; Ye Z; Zhang F; Lin SC; Han J J Biol Chem; 2008 Apr; 283(16):11014-23. PubMed ID: 18268017 [TBL] [Abstract][Full Text] [Related]
16. Effect of ethanol on innate antiviral pathways and HCV replication in human liver cells. Plumlee CR; Lazaro CA; Fausto N; Polyak SJ Virol J; 2005 Dec; 2():89. PubMed ID: 16324217 [TBL] [Abstract][Full Text] [Related]
17. The activation of ERK1/2 and p38 mitogen-activated protein kinases is dynamically regulated in the developing rat visual system. Oliveira CS; Rigon AP; Leal RB; Rossi FM Int J Dev Neurosci; 2008; 26(3-4):355-62. PubMed ID: 18280691 [TBL] [Abstract][Full Text] [Related]
18. Docking of PRAK/MK5 to the atypical MAPKs ERK3 and ERK4 defines a novel MAPK interaction motif. Aberg E; Torgersen KM; Johansen B; Keyse SM; Perander M; Seternes OM J Biol Chem; 2009 Jul; 284(29):19392-401. PubMed ID: 19473979 [TBL] [Abstract][Full Text] [Related]
19. Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. Lavoie JN; L'Allemain G; Brunet A; Müller R; Pouysségur J J Biol Chem; 1996 Aug; 271(34):20608-16. PubMed ID: 8702807 [TBL] [Abstract][Full Text] [Related]
20. The p42/p44 mitogen-activated protein kinase cascade is determinant in mediating activation of the Na+/H+ exchanger (NHE1 isoform) in response to growth factors. Bianchini L; L'Allemain G; Pouysségur J J Biol Chem; 1997 Jan; 272(1):271-9. PubMed ID: 8995258 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]