BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 21666810)

  • 1. Physiological roles of mitogen-activated-protein-kinase-activated p38-regulated/activated protein kinase.
    Kostenko S; Dumitriu G; Lægreid KJ; Moens U
    World J Biol Chem; 2011 May; 2(5):73-89. PubMed ID: 21666810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and function of MK5/PRAK: the loner among the mitogen-activated protein kinase-activated protein kinases.
    Moens U; Kostenko S
    Biol Chem; 2013 Sep; 394(9):1115-32. PubMed ID: 23729623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitogen-activated protein kinase p38 and MK2, MK3 and MK5: ménage à trois or ménage à quatre?
    Shiryaev A; Moens U
    Cell Signal; 2010 Aug; 22(8):1185-92. PubMed ID: 20227494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases.
    Cargnello M; Roux PP
    Microbiol Mol Biol Rev; 2011 Mar; 75(1):50-83. PubMed ID: 21372320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Both binding and activation of p38 mitogen-activated protein kinase (MAPK) play essential roles in regulation of the nucleocytoplasmic distribution of MAPK-activated protein kinase 5 by cellular stress.
    Seternes OM; Johansen B; Hegge B; Johannessen M; Keyse SM; Moens U
    Mol Cell Biol; 2002 Oct; 22(20):6931-45. PubMed ID: 12242275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New insights into the activation, interaction partners and possible functions of MK5/PRAK.
    Perander M; Keyse SM; Seternes OM
    Front Biosci (Landmark Ed); 2016 Jan; 21(2):374-84. PubMed ID: 26709779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Role of Mitogen-Activated Protein Kinase-Activated Protein Kinases (MAPKAPKs) in Inflammation.
    Moens U; Kostenko S; Sveinbjørnsson B
    Genes (Basel); 2013 Mar; 4(2):101-33. PubMed ID: 24705157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cross-talk between protein kinase A and the MAPK-activated protein kinases RSK1 and MK5.
    Kostenko S; Shiryaev A; Dumitriu G; Gerits N; Moens U
    J Recept Signal Transduct Res; 2011 Feb; 31(1):1-9. PubMed ID: 20849292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Does MK5 reconcile classical and atypical MAP kinases?
    Perander M; Keyse SM; Seternes OM
    Front Biosci; 2008 May; 13():4617-24. PubMed ID: 18508533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of MK5/PRAK by the atypical MAP kinase ERK3 defines a novel signal transduction pathway.
    Seternes OM; Mikalsen T; Johansen B; Michaelsen E; Armstrong CG; Morrice NA; Turgeon B; Meloche S; Moens U; Keyse SM
    EMBO J; 2004 Dec; 23(24):4780-91. PubMed ID: 15577943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions.
    Roux PP; Blenis J
    Microbiol Mol Biol Rev; 2004 Jun; 68(2):320-44. PubMed ID: 15187187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of PRAK subcellular location by p38 MAP kinases.
    New L; Jiang Y; Han J
    Mol Biol Cell; 2003 Jun; 14(6):2603-16. PubMed ID: 12808055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Ser(186) phospho-acceptor site within ERK4 is essential for its ability to interact with and activate PRAK/MK5.
    Perander M; Aberg E; Johansen B; Dreyer B; Guldvik IJ; Outzen H; Keyse SM; Seternes OM
    Biochem J; 2008 May; 411(3):613-22. PubMed ID: 18248330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of MAPK-activated protein kinase 5 activity and subcellular localization by the atypical MAPK ERK4/MAPK4.
    Aberg E; Perander M; Johansen B; Julien C; Meloche S; Keyse SM; Seternes OM
    J Biol Chem; 2006 Nov; 281(46):35499-510. PubMed ID: 16971392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determinants that control the distinct subcellular localization of p38alpha-PRAK and p38beta-PRAK complexes.
    Li Q; Zhang N; Zhang D; Wang Y; Lin T; Wang Y; Zhou H; Ye Z; Zhang F; Lin SC; Han J
    J Biol Chem; 2008 Apr; 283(16):11014-23. PubMed ID: 18268017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of ethanol on innate antiviral pathways and HCV replication in human liver cells.
    Plumlee CR; Lazaro CA; Fausto N; Polyak SJ
    Virol J; 2005 Dec; 2():89. PubMed ID: 16324217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The activation of ERK1/2 and p38 mitogen-activated protein kinases is dynamically regulated in the developing rat visual system.
    Oliveira CS; Rigon AP; Leal RB; Rossi FM
    Int J Dev Neurosci; 2008; 26(3-4):355-62. PubMed ID: 18280691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Docking of PRAK/MK5 to the atypical MAPKs ERK3 and ERK4 defines a novel MAPK interaction motif.
    Aberg E; Torgersen KM; Johansen B; Keyse SM; Perander M; Seternes OM
    J Biol Chem; 2009 Jul; 284(29):19392-401. PubMed ID: 19473979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway.
    Lavoie JN; L'Allemain G; Brunet A; Müller R; Pouysségur J
    J Biol Chem; 1996 Aug; 271(34):20608-16. PubMed ID: 8702807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The p42/p44 mitogen-activated protein kinase cascade is determinant in mediating activation of the Na+/H+ exchanger (NHE1 isoform) in response to growth factors.
    Bianchini L; L'Allemain G; Pouysségur J
    J Biol Chem; 1997 Jan; 272(1):271-9. PubMed ID: 8995258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.