These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 21666824)

  • 1. PRODUCTION OF SOUND BY UNSTEADY THROTTLING OF FLOW INTO A RESONANT CAVITY, WITH APPLICATION TO VOICED SPEECH.
    Howe MS; McGowan RS
    J Fluid Mech; 2011 Apr; 672():428-450. PubMed ID: 21666824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ON THE GENERALISED FANT EQUATION.
    Howe MS; McGowan RS
    J Sound Vib; 2011 Jun; 330(13):3123-3140. PubMed ID: 21603054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Source-tract interaction with prescribed vocal fold motion.
    McGowan RS; Howe MS
    J Acoust Soc Am; 2012 Apr; 131(4):2999-3016. PubMed ID: 22501076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the role of glottis-interior sources in the production of voiced sound.
    Howe MS; McGowan RS
    J Acoust Soc Am; 2012 Feb; 131(2):1391-400. PubMed ID: 22352512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AERODYNAMIC SOUND OF A BODY IN ARBITRARY, DEFORMABLE MOTION, WITH APPLICATION TO PHONATION.
    Howe MS; McGowan RS
    J Sound Vib; 2013 Aug; 332(17):3909-3923. PubMed ID: 24031098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ON THE SINGLE-MASS MODEL OF THE VOCAL FOLDS.
    Howe MS; McGowan RS
    Fluid Dyn Res; 2010 Jan; 42(1):15001. PubMed ID: 20419082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the aerodynamic sound of speech through static vocal tract models of various glottal shapes.
    Schickhofer L; Mihaescu M
    J Biomech; 2020 Jan; 99():109484. PubMed ID: 31761432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compressible flow simulations of voiced speech using rigid vocal tract geometries acquired by MRI.
    Schickhofer L; Malinen J; Mihaescu M
    J Acoust Soc Am; 2019 Apr; 145(4):2049. PubMed ID: 31046346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ANALYSIS OF FLOW-STRUCTURE COUPLING IN A MECHANICAL MODEL OF THE VOCAL FOLDS AND THE SUBGLOTTAL SYSTEM.
    Howe MS; McGowan RS
    J Fluids Struct; 2009 Nov; 25(8):1299-1317. PubMed ID: 20161450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aeroacoustic production of low-frequency unvoiced speech sounds.
    Krane MH
    J Acoust Soc Am; 2005 Jul; 118(1):410-27. PubMed ID: 16119362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental verification of the quasi-steady approximation for aerodynamic sound generation by pulsating jets in tubes.
    Zhang Z; Mongeau L; Frankel SH
    J Acoust Soc Am; 2002 Oct; 112(4):1652-63. PubMed ID: 12398470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glottal source-vocal tract interaction.
    Koizumi T; Taniguchi S; Hiromitsu S
    J Acoust Soc Am; 1985 Nov; 78(5):1541-7. PubMed ID: 4067067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrative Insights into the Myoelastic-Aerodynamic Theory and Acoustics of Phonation. Scientific Tribute to Donald G. Miller.
    Švec JG; Schutte HK; Chen CJ; Titze IR
    J Voice; 2023 May; 37(3):305-313. PubMed ID: 33744068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Voicing produced by a constant velocity lung source.
    Howe MS; McGowan RS
    J Acoust Soc Am; 2013 Apr; 133(4):2340-9. PubMed ID: 23556600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical assessment of unsteady aerodynamic effects in phonation.
    Krane MH; Wei T
    J Acoust Soc Am; 2006 Sep; 120(3):1578-88. PubMed ID: 17004480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aerodynamic, eletroglottographic and acoustic measures of the voiced postalveolar fricative.
    Hashimoto PT; Pagan-Neves LO; Jesus LMT; Wertzner HF
    Codas; 2018 Jun; 30(3):e20170177. PubMed ID: 29972470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perceptual equivalence of the Liljencrants-Fant and linear-filter glottal flow models.
    Perrotin O; Feugère L; d'Alessandro C
    J Acoust Soc Am; 2021 Aug; 150(2):1273. PubMed ID: 34470270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mechanisms of harmonic sound generation during phonation: A multi-modal measurement-based approach.
    Lodermeyer A; Bagheri E; Kniesburges S; Näger C; Probst J; Döllinger M; Becker S
    J Acoust Soc Am; 2021 Nov; 150(5):3485. PubMed ID: 34852620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An acoustic source model for asymmetric intraglottal flow with application to reduced-order models of the vocal folds.
    Erath BD; Peterson SD; Weiland KS; Plesniak MW; Zañartu M
    PLoS One; 2019; 14(7):e0219914. PubMed ID: 31344084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-dimensional model of vocal fold vibration for sound synthesis of voice and soprano singing.
    Adachi S; Yu J
    J Acoust Soc Am; 2005 May; 117(5):3213-24. PubMed ID: 15957788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.