These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 21667310)
1. Combination of extended X-ray absorption fine structure spectroscopy with lipidic cubic phases for the study of cation binding in bacteriorhodopsin. Perálvarez-Marín A; Sepulcre F; Márquez M; Proietti MG; Padrós E Eur Biophys J; 2011 Aug; 40(8):1007-12. PubMed ID: 21667310 [TBL] [Abstract][Full Text] [Related]
2. Crystallization in lipidic cubic phases: a case study with bacteriorhodopsin. Gordeliy VI; Schlesinger R; Efremov R; Büldt G; Heberle J Methods Mol Biol; 2003; 228():305-16. PubMed ID: 12824562 [No Abstract] [Full Text] [Related]
3. Lipidic cubic phases as matrices for membrane protein crystallization. Nollert P Methods; 2004 Nov; 34(3):348-53. PubMed ID: 15325652 [TBL] [Abstract][Full Text] [Related]
4. X-ray absorption and molecular dynamics study of cation binding sites in the purple membrane. Sepulcre F; Cordomí A; Proietti MG; Perez JJ; García J; Querol E; Padrós E Proteins; 2007 May; 67(2):360-74. PubMed ID: 17266122 [TBL] [Abstract][Full Text] [Related]
5. A quantitative XANES analysis of the calcium high-affinity binding site of the purple membrane. Sepulcre F; Proietti MG; Benfatto M; Della Longa S; García J; Padrós E Biophys J; 2004 Jul; 87(1):513-20. PubMed ID: 15240484 [TBL] [Abstract][Full Text] [Related]
6. It's not just a phase: crystallization and X-ray structure determination of bacteriorhodopsin in lipidic cubic phases. Gouaux E Structure; 1998 Jan; 6(1):5-10. PubMed ID: 9493262 [TBL] [Abstract][Full Text] [Related]
7. An extended x-ray absorption fine structure study of the high-affinity cation-binding site in the purple membrane. Sepulcre F; Cladera J; García J; Proietti MG; Torres J; Padrós E Biophys J; 1996 Feb; 70(2):852-6. PubMed ID: 8789102 [TBL] [Abstract][Full Text] [Related]
8. Measurement of dipolar couplings in a uniformly (13)C,(15)N-labeled membrane protein: distances between the Schiff base and aspartic acids in the active site of bacteriorhodopsin. Jaroniec CP; Lansing JC; Tounge BA; Belenky M; Herzfeld J; Griffin RG J Am Chem Soc; 2001 Dec; 123(51):12929-30. PubMed ID: 11749563 [No Abstract] [Full Text] [Related]
9. The nature of thermal transitions in purple membranes from Halobacterium halobium. Shnyrov VL; Azuaga AI; Mateo PL Biochem Soc Trans; 1994 Aug; 22(3):367S. PubMed ID: 7821619 [No Abstract] [Full Text] [Related]
10. Binding of Fe3+ ions to halobacterial purple membranes as studied by Mössbauer spectroscopy. Maximychev AV; Kostyuchenko IG; Chibirova FKh; Zhilinskaya EA; Chekulaeva LN; Timashev SF Membr Cell Biol; 1997; 10(5):487-501. PubMed ID: 9225253 [TBL] [Abstract][Full Text] [Related]
11. Control of the integral membrane proton pump, bacteriorhodopsin, by purple membrane lipids of Halobacterium halobium. Mukhopadhyay AK; Dracheva S; Bose S; Hendler RW Biochemistry; 1996 Jul; 35(28):9245-52. PubMed ID: 8703930 [TBL] [Abstract][Full Text] [Related]
12. Culture temperature affects the molecular motion of bacteriorhodopsin within the purple membrane. Kikukawa T; Araiso T; Mukasa K; Shimozawa T; Kamo N Chem Pharm Bull (Tokyo); 1996 Mar; 44(3):473-6. PubMed ID: 8882448 [TBL] [Abstract][Full Text] [Related]
13. Optical and electric signals from dried oriented purple membrane of bacteriorhodopsins. Tóth-Boconádi R; Dér A; Keszthelyi L Bioelectrochemistry; 2011 Apr; 81(1):17-21. PubMed ID: 21236739 [TBL] [Abstract][Full Text] [Related]
14. Studies on the temperature effect on bacteriorhodopsin of purple and blue membrane by fluorescence and absorption spectroscopy. Cheng LY; Zhang Y; Liu SG; Hu KS; Ruan KC Acta Biochim Biophys Sin (Shanghai); 2006 Oct; 38(10):691-6. PubMed ID: 17033715 [TBL] [Abstract][Full Text] [Related]
16. Moist and soft, dry and stiff: a review of neutron experiments on hydration-dynamics-activity relations in the purple membrane of Halobacterium salinarum. Zaccai G Biophys Chem; 2000 Aug; 86(2-3):249-57. PubMed ID: 11026689 [TBL] [Abstract][Full Text] [Related]
17. Absorption spectroscopy of three-dimensional bacteriorhodopsin crystals at cryogenic temperatures: effects of altered hydration. Portuondo-Campa E; Schenkl S; Dolder M; Chergui M; Landau EM; Haacke S Acta Crystallogr D Biol Crystallogr; 2006 Apr; 62(Pt 4):368-74. PubMed ID: 16552137 [TBL] [Abstract][Full Text] [Related]
18. The effect of metal cation binding on the protein, lipid and retinal isomeric ratio in regenerated bacteriorhodopsin of purple membrane. Wang J; el-Sayed MA Photochem Photobiol; 2001 May; 73(5):564-71. PubMed ID: 11367581 [TBL] [Abstract][Full Text] [Related]
19. Relationship between structure, dynamics and function of hydrated purple membrane investigated by neutron scattering and dielectric spectroscopy. Buchsteiner A; Lechner RE; Hauss T; Dencher NA J Mol Biol; 2007 Aug; 371(4):914-23. PubMed ID: 17599349 [TBL] [Abstract][Full Text] [Related]
20. Experimental and theoretical characterization of the high-affinity cation-binding site of the purple membrane. Pardo L; Sepulcre F; Cladera J; Duñach M; Labarta A; Tejada J; Padrós E Biophys J; 1998 Aug; 75(2):777-84. PubMed ID: 9675179 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]