These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 21667318)

  • 1. The effect of lignin photodegradation on decomposability of Calamagrostis epigeios grass litter.
    Frouz J; Cajthaml T; Mudrák O
    Biodegradation; 2011 Nov; 22(6):1247-54. PubMed ID: 21667318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of 13C and 15N mass spectrometry to study the decomposition of Calamagrostis epigeios in soil column experiments with and without ash additions.
    Ludwig B; Heil B; Flessa H; Beese F
    Isotopes Environ Health Stud; 2000; 36(1):49-61. PubMed ID: 11022325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contrasting nutrient stocks and litter decomposition in stands of native and invasive species in a sub-tropical estuarine marsh.
    Tong C; Zhang L; Wang W; Gauci V; Marrs R; Liu B; Jia R; Zeng C
    Environ Res; 2011 Oct; 111(7):909-16. PubMed ID: 21704985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactive effects of elevated CO2, N deposition and climate change on plant litter quality in a California annual grassland.
    Henry HA; Cleland EE; Field CB; Vitousek PM
    Oecologia; 2005 Jan; 142(3):465-73. PubMed ID: 15558326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular analysis of fungal communities and laccase genes in decomposing litter reveals differences among forest types but no impact of nitrogen deposition.
    Blackwood CB; Waldrop MP; Zak DR; Sinsabaugh RL
    Environ Microbiol; 2007 May; 9(5):1306-16. PubMed ID: 17472642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leaf traits capture the effects of land use changes and climate on litter decomposability of grasslands across Europe.
    Fortunel C; Garnier E; Joffre R; Kazakou E; Quested H; Grigulis K; Lavorel S; Ansquer P; Castro H; Cruz P; Dolezal J; Eriksson O; Freitas H; Golodets C; Jouany C; Kigel J; Kleyer M; Lehsten V; Leps J; Meier T; Pakeman R; Papadimitriou M; Papanastasis VP; Quétier F; Robson M; Sternberg M; Theau JP; Thébault A; Zarovali M
    Ecology; 2009 Mar; 90(3):598-611. PubMed ID: 19341132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nutrients and defoliation increase soil carbon inputs in grassland.
    Ziter C; MacDougall AS
    Ecology; 2013 Jan; 94(1):106-16. PubMed ID: 23600245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The estimated impact of fungi on nutrient dynamics during decomposition of Phragmites australis leaf sheaths and stems.
    Van Ryckegem G; Van Driessche G; Van Beeumen JJ; Verbeken A
    Microb Ecol; 2006 Oct; 52(3):564-74. PubMed ID: 17006744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The interaction between abiotic photodegradation and microbial decomposition under ultraviolet radiation.
    Wang J; Liu L; Wang X; Chen Y
    Glob Chang Biol; 2015 May; 21(5):2095-104. PubMed ID: 25418963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of microarthropods in terrestrial decomposition: a meta-analysis of 40 years of litterbag studies.
    Kampichler C; Bruckner A
    Biol Rev Camb Philos Soc; 2009 Aug; 84(3):375-89. PubMed ID: 19485987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual role of lignin in plant litter decomposition in terrestrial ecosystems.
    Austin AT; Ballaré CL
    Proc Natl Acad Sci U S A; 2010 Mar; 107(10):4618-22. PubMed ID: 20176940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems.
    Sayer EJ
    Biol Rev Camb Philos Soc; 2006 Feb; 81(1):1-31. PubMed ID: 16460580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A global perspective on belowground carbon dynamics under nitrogen enrichment.
    Liu L; Greaver TL
    Ecol Lett; 2010 Jul; 13(7):819-28. PubMed ID: 20482580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Soil carbon dynamics and carbon budget of newly reconstructed tall-grass prairies in south central Iowa.
    Guzman JG; Al-Kaisi MM
    J Environ Qual; 2010; 39(1):136-46. PubMed ID: 20048301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lignin decomposition along an Alpine elevation gradient in relation to physicochemical and soil microbial parameters.
    Duboc O; Dignac MF; Djukic I; Zehetner F; Gerzabek MH; Rumpel C
    Glob Chang Biol; 2014 Jul; 20(7):2272-85. PubMed ID: 24323640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interrelationships among shrub encroachment, land management, and litter decomposition in a semidesert grassland.
    Throop HL; Archer SR
    Ecol Appl; 2007 Sep; 17(6):1809-23. PubMed ID: 17913142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation.
    Austin AT; Vivanco L
    Nature; 2006 Aug; 442(7102):555-8. PubMed ID: 16885982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectral analysis of coniferous foliage and possible links to soil chemistry: are spectral chlorophyll indices related to forest floor dissolved organic C and N?
    Albrechtova J; Seidl Z; Aitkenhead-Peterson J; Lhotáková Z; Rock BN; Alexander JE; Malenovský Z; McDowell WH
    Sci Total Environ; 2008 Oct; 404(2-3):424-32. PubMed ID: 18191443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Species diversity and chemical properties of litter influence non-additive effects of litter mixtures on soil carbon and nitrogen cycling.
    Mao B; Mao R; Zeng DH
    PLoS One; 2017; 12(7):e0180422. PubMed ID: 28686660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing the potential for cadmium phytoremediation with Calamagrostis epigejos: a pot experiment.
    Lehmann C; Rebele F
    Int J Phytoremediation; 2004; 6(2):169-83. PubMed ID: 15328982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.