These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 21668029)

  • 1. Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing.
    Kuzum D; Jeyasingh RG; Lee B; Wong HS
    Nano Lett; 2012 May; 12(5):2179-86. PubMed ID: 21668029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of Synaptic Plasticity Learning of Ferroelectric Tunnel Memristor by Nanoscale Interface Engineering.
    Guo R; Zhou Y; Wu L; Wang Z; Lim Z; Yan X; Lin W; Wang H; Yoong HY; Chen S; Ariando ; Venkatesan T; Wang J; Chow GM; Gruverman A; Miao X; Zhu Y; Chen J
    ACS Appl Mater Interfaces; 2018 Apr; 10(15):12862-12869. PubMed ID: 29617112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fully Printed All-Solid-State Organic Flexible Artificial Synapse for Neuromorphic Computing.
    Liu Q; Liu Y; Li J; Lau C; Wu F; Zhang A; Li Z; Chen M; Fu H; Draper J; Cao X; Zhou C
    ACS Appl Mater Interfaces; 2019 May; 11(18):16749-16757. PubMed ID: 31025562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoscale RRAM-based synaptic electronics: toward a neuromorphic computing device.
    Park S; Noh J; Choo ML; Sheri AM; Chang M; Kim YB; Kim CJ; Jeon M; Lee BG; Lee BH; Hwang H
    Nanotechnology; 2013 Sep; 24(38):384009. PubMed ID: 23999317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of Bio-Inspired Artificial Synapses: Materials, Structures, and Mechanisms.
    Yu H; Wei H; Gong J; Han H; Ma M; Wang Y; Xu W
    Small; 2021 Mar; 17(9):e2000041. PubMed ID: 32452636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organic Synapses for Neuromorphic Electronics: From Brain-Inspired Computing to Sensorimotor Nervetronics.
    Lee Y; Lee TW
    Acc Chem Res; 2019 Apr; 52(4):964-974. PubMed ID: 30896916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activity-dependent synaptic plasticity of a chalcogenide electronic synapse for neuromorphic systems.
    Li Y; Zhong Y; Zhang J; Xu L; Wang Q; Sun H; Tong H; Cheng X; Miao X
    Sci Rep; 2014 May; 4():4906. PubMed ID: 24809396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mimicking Biological Synaptic Functionality with an Indium Phosphide Synaptic Device on Silicon for Scalable Neuromorphic Computing.
    Sarkar D; Tao J; Wang W; Lin Q; Yeung M; Ren C; Kapadia R
    ACS Nano; 2018 Feb; 12(2):1656-1663. PubMed ID: 29328623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analog memory and spike-timing-dependent plasticity characteristics of a nanoscale titanium oxide bilayer resistive switching device.
    Seo K; Kim I; Jung S; Jo M; Park S; Park J; Shin J; Biju KP; Kong J; Lee K; Lee B; Hwang H
    Nanotechnology; 2011 Jun; 22(25):254023. PubMed ID: 21572200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organic core-sheath nanowire artificial synapses with femtojoule energy consumption.
    Xu W; Min SY; Hwang H; Lee TW
    Sci Adv; 2016 Jun; 2(6):e1501326. PubMed ID: 27386556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Progress on Neuromorphic Synapse Electronics: From Emerging Materials, Devices, to Neural Networks.
    Zhao Y; Jiang J
    J Nanosci Nanotechnol; 2018 Dec; 18(12):8003-8015. PubMed ID: 30189917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexible Ionic-Electronic Hybrid Oxide Synaptic TFTs with Programmable Dynamic Plasticity for Brain-Inspired Neuromorphic Computing.
    John RA; Ko J; Kulkarni MR; Tiwari N; Chien NA; Ing NG; Leong WL; Mathews N
    Small; 2017 Aug; 13(32):. PubMed ID: 28656608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible three-dimensional artificial synapse networks with correlated learning and trainable memory capability.
    Wu C; Kim TW; Choi HY; Strukov DB; Yang JJ
    Nat Commun; 2017 Sep; 8(1):752. PubMed ID: 28963546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synaptic electronics: materials, devices and applications.
    Kuzum D; Yu S; Wong HS
    Nanotechnology; 2013 Sep; 24(38):382001. PubMed ID: 23999572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration of nanoscale memristor synapses in neuromorphic computing architectures.
    Indiveri G; Linares-Barranco B; Legenstein R; Deligeorgis G; Prodromakis T
    Nanotechnology; 2013 Sep; 24(38):384010. PubMed ID: 23999381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultra-low power Hf
    Chen L; Wang TY; Dai YW; Cha MY; Zhu H; Sun QQ; Ding SJ; Zhou P; Chua L; Zhang DW
    Nanoscale; 2018 Aug; 10(33):15826-15833. PubMed ID: 30105324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ab Initio Molecular-Dynamics Simulation of Neuromorphic Computing in Phase-Change Memory Materials.
    Skelton JM; Loke D; Lee T; Elliott SR
    ACS Appl Mater Interfaces; 2015 Jul; 7(26):14223-30. PubMed ID: 26040531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optically Stimulated Artificial Synapse Based on Layered Black Phosphorus.
    Ahmed T; Kuriakose S; Mayes ELH; Ramanathan R; Bansal V; Bhaskaran M; Sriram S; Walia S
    Small; 2019 May; 15(22):e1900966. PubMed ID: 31018039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain-like associative learning using a nanoscale non-volatile phase change synaptic device array.
    Eryilmaz SB; Kuzum D; Jeyasingh R; Kim S; BrightSky M; Lam C; Wong HS
    Front Neurosci; 2014; 8():205. PubMed ID: 25100936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy-efficient neuron, synapse and STDP integrated circuits.
    Cruz-Albrecht JM; Yung MW; Srinivasa N
    IEEE Trans Biomed Circuits Syst; 2012 Jun; 6(3):246-56. PubMed ID: 23853146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.