These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Quantifying mixing in viscously unstable porous media flows. Jha B; Cueto-Felgueroso L; Juanes R Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 2):066312. PubMed ID: 22304195 [TBL] [Abstract][Full Text] [Related]
3. The formation of spikes in the displacement of miscible fluids. Rashidnia N; Balasubramaniam R; Schroer RT Ann N Y Acad Sci; 2004 Nov; 1027():311-6. PubMed ID: 15644364 [TBL] [Abstract][Full Text] [Related]
4. Interface evolution during radial miscible viscous fingering. Chui JY; de Anna P; Juanes R Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):041003. PubMed ID: 26565159 [TBL] [Abstract][Full Text] [Related]
5. Synergetic fluid mixing from viscous fingering and alternating injection. Jha B; Cueto-Felgueroso L; Juanes R Phys Rev Lett; 2013 Oct; 111(14):144501. PubMed ID: 24138242 [TBL] [Abstract][Full Text] [Related]
6. Uniqueness of Landau-Lifshitz energy frame in relativistic dissipative hydrodynamics. Tsumura K; Kunihiro T Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):053008. PubMed ID: 23767621 [TBL] [Abstract][Full Text] [Related]
7. Research on the Influence of Heterogeneity and Viscosity on the Fluid Intrusion Mechanism of the Water Flooding Process Based on the Microscopic Visualization Experiment. Wang J; Li J; Li Y; Xu R; Xu G; Yang J ACS Omega; 2024 Jan; 9(2):2866-2873. PubMed ID: 38250406 [TBL] [Abstract][Full Text] [Related]
8. Radial viscous fingering in yield stress fluids: onset of pattern formation. Fontana JV; Lira SA; Miranda JA Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013016. PubMed ID: 23410435 [TBL] [Abstract][Full Text] [Related]
9. Fingering instability and mixing of a blob in porous media. Pramanik S; Mishra M Phys Rev E; 2016 Oct; 94(4-1):043106. PubMed ID: 27841573 [TBL] [Abstract][Full Text] [Related]
10. Viscous fingering in packed chromatographic columns: non-linear dynamics. Rousseaux G; Martin M; De Wit A J Chromatogr A; 2011 Nov; 1218(46):8353-61. PubMed ID: 22005294 [TBL] [Abstract][Full Text] [Related]
11. Numerical study on the characteristics of viscous fingering during the displacement process of non-Newtonian fluid. Wu YT; Qin Z; Ma H; Lyu SK PLoS One; 2024; 19(9):e0309176. PubMed ID: 39325769 [TBL] [Abstract][Full Text] [Related]
12. Density-driven instabilities of variable-viscosity miscible fluids in a capillary tube. Meiburg E; Vanaparthy SH; Payr MD; Wilhelm D Ann N Y Acad Sci; 2004 Nov; 1027():383-402. PubMed ID: 15644370 [TBL] [Abstract][Full Text] [Related]
13. Low-Reynolds-number swimming in viscous two-phase fluids. Du J; Keener JP; Guy RD; Fogelson AL Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 2):036304. PubMed ID: 22587177 [TBL] [Abstract][Full Text] [Related]
14. Differences in miscible viscous fingering of finite width slices with positive or negative log-mobility ratio. Mishra M; Martin M; De Wit A Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Dec; 78(6 Pt 2):066306. PubMed ID: 19256944 [TBL] [Abstract][Full Text] [Related]
15. Extension of the dielectric breakdown model for simulation of viscous fingering at finite viscosity ratios. Doorwar S; Mohanty KK Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013028. PubMed ID: 25122390 [TBL] [Abstract][Full Text] [Related]