These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 21668167)

  • 1. Gyrokinetic Fokker-Planck collision operator.
    Li B; Ernst DR
    Phys Rev Lett; 2011 May; 106(19):195002. PubMed ID: 21668167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gyrokinetic Landau collision operator in conservative form.
    Pan Q; Ernst DR
    Phys Rev E; 2019 Feb; 99(2-1):023201. PubMed ID: 30934259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Importance of gyrokinetic exact Fokker-Planck collisions in fusion plasma turbulence.
    Pan Q; Ernst DR; Hatch DR
    Phys Rev E; 2021 May; 103(5):L051202. PubMed ID: 34134236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gyrokinetic linearized Landau collision operator.
    Madsen J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):011101. PubMed ID: 23410276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solving the Fokker-Planck kinetic equation on a lattice.
    Moroni D; Rotenberg B; Hansen JP; Succi S; Melchionna S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066707. PubMed ID: 16907023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kappa and other nonequilibrium distributions from the Fokker-Planck equation and the relationship to Tsallis entropy.
    Shizgal BD
    Phys Rev E; 2018 May; 97(5-1):052144. PubMed ID: 29906998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability analysis of mean-field-type nonlinear Fokker-Planck equations associated with a generalized entropy and its application to the self-gravitating system.
    Shiino M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056118. PubMed ID: 12786231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Consequences of the H theorem from nonlinear Fokker-Planck equations.
    Schwämmle V; Nobre FD; Curado EM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):041123. PubMed ID: 17994952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generalized Fokker-Planck equation, Brownian motion, and ergodicity.
    Plyukhin AV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 1):061136. PubMed ID: 18643246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interacting Particle Solutions of Fokker-Planck Equations Through Gradient-Log-Density Estimation.
    Maoutsa D; Reich S; Opper M
    Entropy (Basel); 2020 Jul; 22(8):. PubMed ID: 33286573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Colored-noise Fokker-Planck equation for the shear-induced self-diffusion process of non-Brownian particles.
    Lukassen LJ; Oberlack M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052145. PubMed ID: 25353777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Operator solutions for fractional Fokker-Planck equations.
    Górska K; Penson KA; Babusci D; Dattoli G; Duchamp GH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031138. PubMed ID: 22587069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fokker-Planck equation for Coulomb relaxation and wave-particle diffusion: Spectral solution and the stability of the Kappa distribution to Coulomb collisions.
    Zhang W; Shizgal BD
    Phys Rev E; 2020 Dec; 102(6-1):062103. PubMed ID: 33466053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectrum of the fokker-planck operator representing diffusion in a random velocity field.
    Chalker JT; Wang ZJ
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jan; 61(1):196-203. PubMed ID: 11046255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neoclassical transport including collisional nonlinearity.
    Candy J; Belli EA
    Phys Rev Lett; 2011 Jun; 106(23):235003. PubMed ID: 21770513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solutions of a class of non-Markovian Fokker-Planck equations.
    Sokolov IM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 1):041101. PubMed ID: 12443171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the accuracy of generalized Fokker-Planck transport equations in tissue optics.
    Phillips KG; Lancellotti C
    Appl Opt; 2009 Jan; 48(2):229-41. PubMed ID: 19137033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generalized thermodynamics and Fokker-Planck equations: applications to stellar dynamics and two-dimensional turbulence.
    Chavanis PH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036108. PubMed ID: 14524833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlinear inhomogeneous Fokker-Planck equations: Entropy and free-energy time evolution.
    Sicuro G; Rapčan P; Tsallis C
    Phys Rev E; 2016 Dec; 94(6-1):062117. PubMed ID: 28085323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Entropy production and nonlinear Fokker-Planck equations.
    Casas GA; Nobre FD; Curado EM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061136. PubMed ID: 23367922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.