These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 21668202)

  • 1. Experimental evidence of a Rayleigh-plateau instability in free falling granular jets.
    Prado G; Amarouchene Y; Kellay H
    Phys Rev Lett; 2011 May; 106(19):198001. PubMed ID: 21668202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Delayed capillary breakup of falling viscous jets.
    Javadi A; Eggers J; Bonn D; Habibi M; Ribe NM
    Phys Rev Lett; 2013 Apr; 110(14):144501. PubMed ID: 25166995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Instability evolution of the viscous elliptic liquid jet in the Rayleigh regime.
    Gu S; Wang L; Hung DLS
    Phys Rev E; 2017 Jun; 95(6-1):063112. PubMed ID: 28709223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Absolute instability of a liquid jet in a coflowing stream.
    Utada AS; Fernandez-Nieves A; Gordillo JM; Weitz DA
    Phys Rev Lett; 2008 Jan; 100(1):014502. PubMed ID: 18232775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Droplet impact on deep liquid pools: Rayleigh jet to formation of secondary droplets.
    Castillo-Orozco E; Davanlou A; Choudhury PK; Kumar R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):053022. PubMed ID: 26651794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Capillarylike fluctuations at the interface of falling granular jets.
    Amarouchene Y; Boudet JF; Kellay H
    Phys Rev Lett; 2008 May; 100(21):218001. PubMed ID: 18518637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive experimental dataset on large-amplitude Rayleigh-Plateau instability in continuous InkJet printing regime.
    Maîtrejean G; Cousin M; Truong F; Verdoot V; Hugenell F; Roux DCD
    Data Brief; 2024 Feb; 52():109941. PubMed ID: 38260863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-destabilizing mechanism of a laminar inviscid liquid jet issuing from a circular nozzle.
    Umemura A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046307. PubMed ID: 21599295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-valued breakup length of a water jet issuing from a finite-length nozzle under normal gravity.
    Umemura A; Kawanabe S; Suzuki S; Osaka J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):036309. PubMed ID: 22060494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thorough small-angle X-ray scattering analysis of the instability of liquid micro-jets in air.
    Marmiroli B; Cacho-Nerin F; Sartori B; Pérez J; Amenitsch H
    J Synchrotron Radiat; 2014 Jan; 21(Pt 1):193-202. PubMed ID: 24365936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of liquid drops at an orifice and dynamics of pinch-off in liquid jets.
    Borthakur MP; Biswas G; Bandyopadhyay D
    Phys Rev E; 2017 Jul; 96(1-1):013115. PubMed ID: 29347101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The acquisition and measurement of surface waves of high-speed liquid jets.
    Gong C; Yang M; Kang C; Wang Y
    J Vis (Tokyo); 2016; 19():211-224. PubMed ID: 27110212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Nanoparticle Surfactants on the Breakup of Free-Falling Water Jets during Continuous Processing of Reconfigurable Structured Liquid Droplets.
    Toor A; Helms BA; Russell TP
    Nano Lett; 2017 May; 17(5):3119-3125. PubMed ID: 28358213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optofluidic Resonance of a Transparent Liquid Jet Excited by a Continuous Wave Laser.
    Liu H; Wang Z; Gao L; Huang Y; Tang H; Zhao X; Deng W
    Phys Rev Lett; 2021 Dec; 127(24):244502. PubMed ID: 34951788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Absolute instability of a viscous hollow jet.
    Gañán-Calvo AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Feb; 75(2 Pt 2):027301. PubMed ID: 17358457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overcoming Rayleigh-Plateau instabilities: Stabilizing and destabilizing liquid-metal streams via electrochemical oxidation.
    Song M; Kartawira K; Hillaire KD; Li C; Eaker CB; Kiani A; Daniels KE; Dickey MD
    Proc Natl Acad Sci U S A; 2020 Aug; 117(32):19026-19032. PubMed ID: 32727907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of axial electric field on the Rayleigh instability at small length scales.
    Bhuptani DK; Sathian SP
    Phys Rev E; 2017 May; 95(5-1):053115. PubMed ID: 28618467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toroidal Droplets: Growth Rates, Dispersion Relations, and Behavior in the Thick-Torus Limit.
    Fragkopoulos AA; Pairam E; Berger E; Fernandez-Nieves A
    Langmuir; 2018 Jan; 34(3):1218-1224. PubMed ID: 29048167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic surface tension measurements with submillisecond resolution using a capillary-jet instability technique.
    Alakoç U; Megaridis CM; McNallan M; Wallace DB
    J Colloid Interface Sci; 2004 Aug; 276(2):379-91. PubMed ID: 15271566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rayleigh instability at small length scales.
    Gopan N; Sathian SP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):033001. PubMed ID: 25314523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.