These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

457 related articles for article (PubMed ID: 21668245)

  • 1. Expansion dynamics in the one-dimensional Fermi-Hubbard model.
    Kajala J; Massel F; Törmä P
    Phys Rev Lett; 2011 May; 106(20):206401. PubMed ID: 21668245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metallic and insulating phases of repulsively interacting fermions in a 3D optical lattice.
    Schneider U; Hackermüller L; Will S; Best T; Bloch I; Costi TA; Helmes RW; Rasch D; Rosch A
    Science; 2008 Dec; 322(5907):1520-5. PubMed ID: 19056980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hopping modulation in a one-dimensional Fermi-Hubbard Hamiltonian.
    Massel F; Leskinen MJ; Törmä P
    Phys Rev Lett; 2009 Aug; 103(6):066404. PubMed ID: 19792589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonequilibrium Mass Transport in the 1D Fermi-Hubbard Model.
    Scherg S; Kohlert T; Herbrych J; Stolpp J; Bordia P; Schneider U; Heidrich-Meisner F; Bloch I; Aidelsburger M
    Phys Rev Lett; 2018 Sep; 121(13):130402. PubMed ID: 30312049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Observation of spatial charge and spin correlations in the 2D Fermi-Hubbard model.
    Cheuk LW; Nichols MA; Lawrence KR; Okan M; Zhang H; Khatami E; Trivedi N; Paiva T; Rigol M; Zwierlein MW
    Science; 2016 Sep; 353(6305):1260-4. PubMed ID: 27634529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spin-imbalance in a 2D Fermi-Hubbard system.
    Brown PT; Mitra D; Guardado-Sanchez E; Schauß P; Kondov SS; Khatami E; Paiva T; Trivedi N; Huse DA; Bakr WS
    Science; 2017 Sep; 357(6358):1385-1388. PubMed ID: 28963252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum simulation of a Fermi-Hubbard model using a semiconductor quantum dot array.
    Hensgens T; Fujita T; Janssen L; Li X; Van Diepen CJ; Reichl C; Wegscheider W; Das Sarma S; Vandersypen LMK
    Nature; 2017 Aug; 548(7665):70-73. PubMed ID: 28770852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microscopic model for feshbach interacting fermions in an optical lattice with arbitrary scattering length and resonance width.
    Wall ML; Carr LD
    Phys Rev Lett; 2012 Aug; 109(5):055302. PubMed ID: 23006184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Mott insulator of fermionic atoms in an optical lattice.
    Jördens R; Strohmaier N; Günter K; Moritz H; Esslinger T
    Nature; 2008 Sep; 455(7210):204-7. PubMed ID: 18784720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamical simulations of classical stochastic systems using matrix product states.
    Johnson TH; Clark SR; Jaksch D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):036702. PubMed ID: 21230208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deconfinement transition and Luttinger to Fermi liquid crossover in quasi-one-dimensional systems.
    Biermann S; Georges A; Lichtenstein A; Giamarchi T
    Phys Rev Lett; 2001 Dec; 87(27 Pt 1):276405. PubMed ID: 11800903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quasiuniversal transient behavior of a nonequilibrium Mott insulator driven by an electric field.
    Mikelsons K; Freericks JK; Krishnamurthy HR
    Phys Rev Lett; 2012 Dec; 109(26):260402. PubMed ID: 23368540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum State Engineering of a Hubbard System with Ultracold Fermions.
    Chiu CS; Ji G; Mazurenko A; Greif D; Greiner M
    Phys Rev Lett; 2018 Jun; 120(24):243201. PubMed ID: 29956952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The cumulant Green's functions method for the Hubbard model.
    Lira RN; Riseborough PS; Silva-Valencia J; Figueira MS
    J Phys Condens Matter; 2023 Mar; 35(24):. PubMed ID: 36944247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fermionic atoms in a three dimensional optical lattice: observing Fermi surfaces, dynamics, and interactions.
    Köhl M; Moritz H; Stöferle T; Günter K; Esslinger T
    Phys Rev Lett; 2005 Mar; 94(8):080403. PubMed ID: 15783869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cold attractive spin polarized Fermi lattice gases and the doped positive U Hubbard model.
    Moreo A; Scalapino DJ
    Phys Rev Lett; 2007 May; 98(21):216402. PubMed ID: 17677791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fermi condensation near van Hove singularities within the Hubbard model on the triangular lattice.
    Yudin D; Hirschmeier D; Hafermann H; Eriksson O; Lichtenstein AI; Katsnelson MI
    Phys Rev Lett; 2014 Feb; 112(7):070403. PubMed ID: 24579572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum lattice-gas model for computational fluid dynamics.
    Yepez J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Apr; 63(4 Pt 2):046702. PubMed ID: 11308976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics in the one-dimensional extended ionic Hubbard model.
    Hafez M; Abolhassani MR
    J Phys Condens Matter; 2011 Jun; 23(24):245602. PubMed ID: 21628789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expansion of 1D polarized superfluids: the Fulde-Ferrell-Larkin-Ovchinnikov state reveals itself.
    Lu H; Baksmaty LO; Bolech CJ; Pu H
    Phys Rev Lett; 2012 Jun; 108(22):225302. PubMed ID: 23003611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.