BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 21668739)

  • 1. c-Myb and GATA-1 alternate dominant roles during megakaryocyte differentiation.
    García P; Berlanga O; Vegiopoulos A; Vyas P; Frampton J
    J Thromb Haemost; 2011 Aug; 9(8):1572-81. PubMed ID: 21668739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. STAT1 promotes megakaryopoiesis downstream of GATA-1 in mice.
    Huang Z; Richmond TD; Muntean AG; Barber DL; Weiss MJ; Crispino JD
    J Clin Invest; 2007 Dec; 117(12):3890-9. PubMed ID: 18060035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Consequences of GATA-1 deficiency in megakaryocytes and platelets.
    Vyas P; Ault K; Jackson CW; Orkin SH; Shivdasani RA
    Blood; 1999 May; 93(9):2867-75. PubMed ID: 10216081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developmental differences in megakaryocytopoiesis are associated with up-regulated TPO signaling through mTOR and elevated GATA-1 levels in neonatal megakaryocytes.
    Liu ZJ; Italiano J; Ferrer-Marin F; Gutti R; Bailey M; Poterjoy B; Rimsza L; Sola-Visner M
    Blood; 2011 Apr; 117(15):4106-17. PubMed ID: 21304100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biologic significance of GATA-1 activities in Ras-mediated megakaryocytic differentiation of hematopoietic cell lines.
    Matsumura I; Kawasaki A; Tanaka H; Sonoyama J; Ezoe S; Minegishi N; Nakajima K; Yamamoto M; Kanakura Y
    Blood; 2000 Oct; 96(7):2440-50. PubMed ID: 11001896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PSTPIP2 dysregulation contributes to aberrant terminal differentiation in GATA-1-deficient megakaryocytes by activating LYN.
    Liu L; Wen Q; Gong R; Gilles L; Stankiewicz MJ; Li W; Guo M; Li L; Sun X; Li W; Crispino JD; Huang Z
    Cell Death Dis; 2014 Jan; 5(1):e988. PubMed ID: 24407241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The regulatory roles of microRNA-146b-5p and its target platelet-derived growth factor receptor α (PDGFRA) in erythropoiesis and megakaryocytopoiesis.
    Zhai PF; Wang F; Su R; Lin HS; Jiang CL; Yang GH; Yu J; Zhang JW
    J Biol Chem; 2014 Aug; 289(33):22600-22613. PubMed ID: 24982425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. c-Myc-mediated control of cell fate in megakaryocyte-erythrocyte progenitors.
    Guo Y; Niu C; Breslin P; Tang M; Zhang S; Wei W; Kini AR; Paner GP; Alkan S; Morris SW; Diaz M; Stiff PJ; Zhang J
    Blood; 2009 Sep; 114(10):2097-106. PubMed ID: 19372257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differentiation of murine committed megakaryocytic progenitors isolated by a novel strategy reveals the complexity of GATA and Ets factor involvement in megakaryocytopoiesis and an unexpected potential role for GATA-6.
    Dumon S; Heath VL; Tomlinson MG; Göttgens B; Frampton J
    Exp Hematol; 2006 May; 34(5):654-63. PubMed ID: 16647571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anomalous megakaryocytopoiesis in mice with mutations in the c-Myb gene.
    Metcalf D; Carpinelli MR; Hyland C; Mifsud S; Dirago L; Nicola NA; Hilton DJ; Alexander WS
    Blood; 2005 May; 105(9):3480-7. PubMed ID: 15665109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ikaros inhibits megakaryopoiesis through functional interaction with GATA-1 and NOTCH signaling.
    Malinge S; Thiollier C; Chlon TM; Doré LC; Diebold L; Bluteau O; Mabialah V; Vainchenker W; Dessen P; Winandy S; Mercher T; Crispino JD
    Blood; 2013 Mar; 121(13):2440-51. PubMed ID: 23335373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances in megakaryocytopoiesis and thrombopoiesis: from bench to bedside.
    Deutsch VR; Tomer A
    Br J Haematol; 2013 Jun; 161(6):778-93. PubMed ID: 23594368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impaired adult myeloid progenitor CMP and GMP cell function in conditional c-myb-knockout mice.
    Lieu YK; Reddy EP
    Cell Cycle; 2012 Sep; 11(18):3504-12. PubMed ID: 22918254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early block to erythromegakaryocytic development conferred by loss of transcription factor GATA-1.
    Stachura DL; Chou ST; Weiss MJ
    Blood; 2006 Jan; 107(1):87-97. PubMed ID: 16144799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. OP9 bone marrow stroma cells differentiate into megakaryocytes and platelets.
    Matsubara Y; Ono Y; Suzuki H; Arai F; Suda T; Murata M; Ikeda Y
    PLoS One; 2013; 8(3):e58123. PubMed ID: 23469264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcription factor GATA-1 in megakaryocyte development.
    Orkin SH; Shivdasani RA; Fujiwara Y; McDevitt MA
    Stem Cells; 1998; 16 Suppl 2():79-83. PubMed ID: 11012179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel role of CKIP-1 in promoting megakaryocytic differentiation.
    Fan J; Wang Y; Shen Y; Liu Q; Gao R; Qiu Y; Wang C; Zhang L
    Oncotarget; 2017 May; 8(18):30138-30150. PubMed ID: 28404913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GATA-2 reinforces megakaryocyte development in the absence of GATA-1.
    Huang Z; Dore LC; Li Z; Orkin SH; Feng G; Lin S; Crispino JD
    Mol Cell Biol; 2009 Sep; 29(18):5168-80. PubMed ID: 19620289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Primitive erythropoiesis and megakaryopoiesis in the yolk sac are independent of c-myb.
    Tober J; McGrath KE; Palis J
    Blood; 2008 Mar; 111(5):2636-9. PubMed ID: 18174377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-Dimensional Environment Sustains Hematopoietic Stem Cell Differentiation into Platelet-Producing Megakaryocytes.
    Pietrzyk-Nivau A; Poirault-Chassac S; Gandrille S; Derkaoui SM; Kauskot A; Letourneur D; Le Visage C; Baruch D
    PLoS One; 2015; 10(8):e0136652. PubMed ID: 26313154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.