BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 21668873)

  • 1. Enhanced melanin fluorescence by stepwise three-photon excitation.
    Kerimo J; Rajadhyaksha M; DiMarzio CA
    Photochem Photobiol; 2011; 87(5):1042-9. PubMed ID: 21668873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Femtosecond two-photon excited fluorescence of melanin.
    Teuchner K; Freyer W; Leupold D; Volkmer A; Birch DJ; Altmeyer P; Stücker M; Hoffmann K
    Photochem Photobiol; 1999 Aug; 70(2):146-51. PubMed ID: 10461455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near-infrared excited state dynamics of melanins: the effects of iron content, photo-damage, chemical oxidation, and aggregate size.
    Simpson MJ; Wilson JW; Robles FE; Dall CP; Glass K; Simon JD; Warren WS
    J Phys Chem A; 2014 Feb; 118(6):993-1003. PubMed ID: 24446774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing near-infrared photorelaxation pathways in eumelanins and pheomelanins.
    Piletic IR; Matthews TE; Warren WS
    J Phys Chem A; 2010 Nov; 114(43):11483-91. PubMed ID: 20882951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A quantum yield map for synthetic eumelanin.
    Nighswander-Rempel SP; Riesz J; Gilmore J; Meredith P
    J Chem Phys; 2005 Nov; 123(19):194901. PubMed ID: 16321107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-resolved and steady-state fluorescence spectroscopy of eumelanin and indolic polymers.
    Nighswander-Rempel SP; Mahadevan IB; Rubinsztein-Dunlop H; Meredith P
    Photochem Photobiol; 2007; 83(6):1449-54. PubMed ID: 18028220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emerging applications of fluorescence spectroscopy to cellular imaging: lifetime imaging, metal-ligand probes, multi-photon excitation and light quenching.
    Lakowicz JR
    Scanning Microsc Suppl; 1996; 10():213-24. PubMed ID: 9601541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative fluorescence excitation spectra of synthetic eumelanin.
    Nighswander-Rempel SP; Riesz J; Gilmore J; Bothma JP; Meredith P
    J Phys Chem B; 2005 Nov; 109(43):20629-35. PubMed ID: 16853670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Establishing structure-function relationships for eumelanin.
    Nofsinger JB; Weinert EE; Simon JD
    Biopolymers; 2002; 67(4-5):302-5. PubMed ID: 12012453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative fluorescence spectra and quantum yield map of synthetic pheomelanin.
    Nighswander-Rempel SP
    Biopolymers; 2006 Aug; 82(6):631-7. PubMed ID: 16575861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Second harmonic imaging of plants tissues and cell implosion using two-photon process in ZnO nanoparticles.
    Urban BE; Neogi PB; Butler SJ; Fujita Y; Neogi A
    J Biophotonics; 2012 Mar; 5(3):283-91. PubMed ID: 22045551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The stepwise two-photon excited melanin fluorescence is a unique diagnostic tool for the detection of malignant transformation in melanocytes.
    Leupold D; Scholz M; Stankovic G; Reda J; Buder S; Eichhorn R; Wessler G; Stücker M; Hoffmann K; Bauer J; Garbe C
    Pigment Cell Melanoma Res; 2011 Jun; 24(3):438-45. PubMed ID: 21457482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-photon excited lifetime imaging of autofluorescence in cells during UVA and NIR photostress.
    König K; So PT; Mantulin WW; Tromberg BJ; Gratton E
    J Microsc; 1996 Sep; 183(Pt 3):197-204. PubMed ID: 8858857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ca2+ fluorescence imaging with pico- and femtosecond two-photon excitation: signal and photodamage.
    Koester HJ; Baur D; Uhl R; Hell SW
    Biophys J; 1999 Oct; 77(4):2226-36. PubMed ID: 10512842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-molecule detection using continuous wave excitation of two-photon fluorescence.
    Hou X; Cheng W
    Opt Lett; 2011 Aug; 36(16):3185-7. PubMed ID: 21847202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-photon excited fluorescence of nitrogen-vacancy centers in proton-irradiated type Ib diamond.
    Wee TL; Tzeng YK; Han CC; Chang HC; Fann W; Hsu JH; Chen KM; Yu YC
    J Phys Chem A; 2007 Sep; 111(38):9379-86. PubMed ID: 17705460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo drug screening in human skin using femtosecond laser multiphoton tomography.
    Konig K; Ehlers A; Stracke F; Riemann I
    Skin Pharmacol Physiol; 2006; 19(2):78-88. PubMed ID: 16685146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D resolved two-photon fluorescence microscopy of living cells using a modified confocal laser scanning microscope.
    König K; Simon U; Halbhuber KJ
    Cell Mol Biol (Noisy-le-grand); 1996 Dec; 42(8):1181-94. PubMed ID: 8997522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large excited state two photon absorptions in the near infrared region of surprisingly stable radical cations of (ferrocenyl)indenes.
    Orian L; Scuppa S; Santi S; Meneghetti M
    Phys Chem Chem Phys; 2013 Aug; 15(31):12971-6. PubMed ID: 23817723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New insights into the physicochemical effects of ammonia/peroxide bleaching of hair and Sepia melanins.
    Prem P; Dube KJ; Madison SA; Bartolone J
    J Cosmet Sci; 2003; 54(4):395-409. PubMed ID: 14528391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.