These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 21668973)

  • 1. Synchronization of cytoplasmic and transferred mitochondrial ribosomal protein gene expression in land plants is linked to Telo-box motif enrichment.
    Wang J; Wang Y; Wang Z; Liu L; Zhu XG; Ma X
    BMC Evol Biol; 2011 Jun; 11():161. PubMed ID: 21668973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein disorder in plants: a view from the chloroplast.
    Yruela I; Contreras-Moreira B
    BMC Plant Biol; 2012 Sep; 12():165. PubMed ID: 22970728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coordination of gene expression between organellar and nuclear genomes.
    Woodson JD; Chory J
    Nat Rev Genet; 2008 May; 9(5):383-95. PubMed ID: 18368053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complex chloroplast RNA metabolism: just debugging the genetic programme?
    Maier UG; Bozarth A; Funk HT; Zauner S; Rensing SA; Schmitz-Linneweber C; Börner T; Tillich M
    BMC Biol; 2008 Aug; 6():36. PubMed ID: 18755031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution of short interstitial telomere motifs in two plant genomes: putative origin and function.
    Gaspin C; Rami JF; Lescure B
    BMC Plant Biol; 2010 Dec; 10():283. PubMed ID: 21171996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Arabidopsis chloroplast ribosomal protein L21 is encoded by a nuclear gene of mitochondrial origin.
    Gallois JL; Achard P; Green G; Mache R
    Gene; 2001 Aug; 274(1-2):179-85. PubMed ID: 11675010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Internal telomeric repeats and 'TCP domain' protein-binding sites co-operate to regulate gene expression in Arabidopsis thaliana cycling cells.
    Trémousaygue D; Garnier L; Bardet C; Dabos P; Hervé C; Lescure B
    Plant J; 2003 Mar; 33(6):957-66. PubMed ID: 12631321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular genetics of chloroplast ribosomal proteins.
    Subramanian AR
    Trends Biochem Sci; 1993 May; 18(5):177-81. PubMed ID: 8328017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loss of the rpl32 gene from the chloroplast genome and subsequent acquisition of a preexisting transit peptide within the nuclear gene in Populus.
    Ueda M; Fujimoto M; Arimura S; Murata J; Tsutsumi N; Kadowaki K
    Gene; 2007 Nov; 402(1-2):51-6. PubMed ID: 17728076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A chloroplast-derived sequence is utilized as a source of promoter sequences for the gene for subunit 9 of NADH dehydrogenase (nad9) in rice mitochondria.
    Nakazono M; Nishiwaki S; Tsutsumi N; Hirai A
    Mol Gen Genet; 1996 Sep; 252(4):371-8. PubMed ID: 8879237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovery of the rpl10 gene in diverse plant mitochondrial genomes and its probable replacement by the nuclear gene for chloroplast RPL10 in two lineages of angiosperms.
    Kubo N; Arimura S
    DNA Res; 2010 Feb; 17(1):1-9. PubMed ID: 19934175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Why chloroplasts and mitochondria retain their own genomes and genetic systems: Colocation for redox regulation of gene expression.
    Allen JF
    Proc Natl Acad Sci U S A; 2015 Aug; 112(33):10231-8. PubMed ID: 26286985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of RLSB, a nuclear-encoded S1 domain RNA binding protein associated with post-transcriptional regulation of plastid-encoded rbcL mRNA in vascular plants.
    Yerramsetty P; Stata M; Siford R; Sage TL; Sage RF; Wong GK; Albert VA; Berry JO
    BMC Evol Biol; 2016 Jun; 16(1):141. PubMed ID: 27356975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleus-independent control of the rubisco operon by the plastid-encoded transcription factor Ycf30 in the red alga Cyanidioschyzon merolae.
    Minoda A; Weber AP; Tanaka K; Miyagishima SY
    Plant Physiol; 2010 Nov; 154(3):1532-40. PubMed ID: 20813908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein substitution in chloroplast ribosome evolution. A eukaryotic cytosolic protein has replaced its organelle homologue (L23) in spinach.
    Bubunenko MG; Schmidt J; Subramanian AR
    J Mol Biol; 1994 Jul; 240(1):28-41. PubMed ID: 8021938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The roles of mitochondrial transcription termination factors (MTERFs) in plants.
    Quesada V
    Physiol Plant; 2016 Jul; 157(3):389-99. PubMed ID: 26781919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genes for two mitochondrial ribosomal proteins in flowering plants are derived from their chloroplast or cytosolic counterparts.
    Adams KL; Daley DO; Whelan J; Palmer JD
    Plant Cell; 2002 Apr; 14(4):931-43. PubMed ID: 11971146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pentatricopeptide repeat proteins constrain genome evolution in chloroplasts.
    Hayes ML; Mulligan RM
    Mol Biol Evol; 2011 Jul; 28(7):2029-39. PubMed ID: 21263042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and expression of the nuclear gene coding for the chloroplast ribosomal protein L21: developmental regulation of a housekeeping gene by alternative promoters.
    Lagrange T; Franzetti B; Axelos M; Mache R; Lerbs-Mache S
    Mol Cell Biol; 1993 Apr; 13(4):2614-22. PubMed ID: 8455634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The gene encoding Arabidopsis thaliana mitochondrial ribosomal protein S13 is a recent duplication of the gene encoding plastid S13.
    Mollier P; Hoffmann B; Debast C; Small I
    Curr Genet; 2002 Mar; 40(6):405-9. PubMed ID: 11919680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.