These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 21669202)

  • 1. Förster resonance energy transfer demonstrates a flavonoid metabolon in living plant cells that displays competitive interactions between enzymes.
    Crosby KC; Pietraszewska-Bogiel A; Gadella TW; Winkel BS
    FEBS Lett; 2011 Jul; 585(14):2193-8. PubMed ID: 21669202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing protein-protein Interactions with FRET-FLIM.
    Bücherl C; Aker J; de Vries S; Borst JW
    Methods Mol Biol; 2010; 655():389-99. PubMed ID: 20734275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studying interactions between chloroplast proteins in intact plant cells using bimolecular fluorescence complementation and Förster resonance energy transfer.
    Maple J; Møller SG
    Methods Mol Biol; 2011; 775():51-65. PubMed ID: 21863438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo hexamerization and characterization of the Arabidopsis AAA ATPase CDC48A complex using forster resonance energy transfer-fluorescence lifetime imaging microscopy and fluorescence correlation spectroscopy.
    Aker J; Hesselink R; Engel R; Karlova R; Borst JW; Visser AJ; de Vries SC
    Plant Physiol; 2007 Oct; 145(2):339-50. PubMed ID: 17693538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Arabidopsis thaliana AAA protein CDC48A interacts in vivo with the somatic embryogenesis receptor-like kinase 1 receptor at the plasma membrane.
    Aker J; Borst JW; Karlova R; de Vries S
    J Struct Biol; 2006 Oct; 156(1):62-71. PubMed ID: 16621602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic imaging of glucose flux impedance using FRET sensors in wild-type Arabidopsis plants.
    Chaudhuri B; Hörmann F; Frommer WB
    J Exp Bot; 2011 Apr; 62(7):2411-7. PubMed ID: 21266495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visualizing Protein Associations in Living Arabidopsis Embryo.
    Long Y; Stahl Y; Weidtkamp-Peters S; Blilou I
    Methods Mol Biol; 2020; 2122():167-188. PubMed ID: 31975303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global analysis of Förster resonance energy transfer in live cells measured by fluorescence lifetime imaging microscopy exploiting the rise time of acceptor fluorescence.
    Laptenok SP; Borst JW; Mullen KM; van Stokkum IH; Visser AJ; van Amerongen H
    Phys Chem Chem Phys; 2010 Jul; 12(27):7593-602. PubMed ID: 20490396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Use of FRET/FLIM to Study Proteins Interacting with Plant Receptor Kinases.
    Weidtkamp-Peters S; Stahl Y
    Methods Mol Biol; 2017; 1621():163-175. PubMed ID: 28567653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physical interactions among flavonoid enzymes in snapdragon and torenia reveal the diversity in the flavonoid metabolon organization of different plant species.
    Fujino N; Tenma N; Waki T; Ito K; Komatsuzaki Y; Sugiyama K; Yamazaki T; Yoshida S; Hatayama M; Yamashita S; Tanaka Y; Motohashi R; Denessiouk K; Takahashi S; Nakayama T
    Plant J; 2018 Apr; 94(2):372-392. PubMed ID: 29421843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Receptor-regulated dynamic interaction between endothelial nitric oxide synthase and calmodulin revealed by fluorescence resonance energy transfer in living cells.
    Jobin CM; Chen H; Lin AJ; Yacono PW; Igarashi J; Michel T; Golan DE
    Biochemistry; 2003 Oct; 42(40):11716-25. PubMed ID: 14529282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence anisotropy imaging microscopy for homo-FRET in living cells.
    Tramier M; Coppey-Moisan M
    Methods Cell Biol; 2008; 85():395-414. PubMed ID: 18155472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging protein molecules using FRET and FLIM microscopy.
    Wallrabe H; Periasamy A
    Curr Opin Biotechnol; 2005 Feb; 16(1):19-27. PubMed ID: 15722011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A membrane-bound FRET-based caspase sensor for detection of apoptosis using fluorescence lifetime and total internal reflection microscopy.
    Angres B; Steuer H; Weber P; Wagner M; Schneckenburger H
    Cytometry A; 2009 May; 75(5):420-7. PubMed ID: 19097170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein localization in living cells and tissues using FRET and FLIM.
    Chen Y; Mills JD; Periasamy A
    Differentiation; 2003 Dec; 71(9-10):528-41. PubMed ID: 14686950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of the interaction between SNAP25 and rabphilin in neuroendocrine PC12 cells using the FLIM/FRET technique.
    Lee JD; Chang YF; Kao FJ; Kao LS; Lin CC; Lu AC; Shyu BC; Chiou SH; Yang DM
    Microsc Res Tech; 2008 Jan; 71(1):26-34. PubMed ID: 17886343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitivity of CFP/YFP and GFP/mCherry pairs to donor photobleaching on FRET determination by fluorescence lifetime imaging microscopy in living cells.
    Tramier M; Zahid M; Mevel JC; Masse MJ; Coppey-Moisan M
    Microsc Res Tech; 2006 Nov; 69(11):933-9. PubMed ID: 16941642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FRET imaging.
    Jares-Erijman EA; Jovin TM
    Nat Biotechnol; 2003 Nov; 21(11):1387-95. PubMed ID: 14595367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence lifetime imaging microscopy: two-dimensional distribution measurement of fluorescence lifetime.
    Fujiwara M; Cieslik W
    Methods Enzymol; 2006; 414():633-42. PubMed ID: 17110215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global analysis of FRET-FLIM data in live plant cells.
    Laptenok SP; Snellenburg JJ; Bücherl CA; Konrad KR; Borst JW
    Methods Mol Biol; 2014; 1076():481-502. PubMed ID: 24108640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.