These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 21669239)

  • 1. Complement activation by carbon nanotubes.
    Rybak-Smith MJ; Sim RB
    Adv Drug Deliv Rev; 2011 Sep; 63(12):1031-41. PubMed ID: 21669239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors.
    Singh R; Pantarotto D; McCarthy D; Chaloin O; Hoebeke J; Partidos CD; Briand JP; Prato M; Bianco A; Kostarelos K
    J Am Chem Soc; 2005 Mar; 127(12):4388-96. PubMed ID: 15783221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perspectives on carbon nanotube-mediated adverse immune effects.
    Andersen AJ; Wibroe PP; Moghimi SM
    Adv Drug Deliv Rev; 2012 Dec; 64(15):1700-5. PubMed ID: 22634159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current investigations into carbon nanotubes for biomedical application.
    Li X; Fan Y; Watari F
    Biomed Mater; 2010 Apr; 5(2):22001. PubMed ID: 20339169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Material properties in complement activation.
    Moghimi SM; Andersen AJ; Ahmadvand D; Wibroe PP; Andresen TL; Hunter AC
    Adv Drug Deliv Rev; 2011 Sep; 63(12):1000-7. PubMed ID: 21689701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of functionalization of carbon nanotubes with psychosine on complement activation and protein adsorption.
    Rybak-Smith MJ; Tripisciano C; Borowiak-Palen E; Lamprecht C; Sim RB
    J Biomed Nanotechnol; 2011 Dec; 7(6):830-9. PubMed ID: 22416583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon nanotubes: biomaterial applications.
    Saito N; Usui Y; Aoki K; Narita N; Shimizu M; Hara K; Ogiwara N; Nakamura K; Ishigaki N; Kato H; Taruta S; Endo M
    Chem Soc Rev; 2009 Jul; 38(7):1897-903. PubMed ID: 19551170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein ultrastructure and the nanoscience of complement activation.
    Vorup-Jensen T; Boesen T
    Adv Drug Deliv Rev; 2011 Sep; 63(12):1008-19. PubMed ID: 21699938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The devil and holy water: protein and carbon nanotube hybrids.
    Calvaresi M; Zerbetto F
    Acc Chem Res; 2013 Nov; 46(11):2454-63. PubMed ID: 23826731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Innate immune humoral factors, C1q and factor H, with differential pattern recognition properties, alter macrophage response to carbon nanotubes.
    Pondman KM; Pednekar L; Paudyal B; Tsolaki AG; Kouser L; Khan HA; Shamji MH; Ten Haken B; Stenbeck G; Sim RB; Kishore U
    Nanomedicine; 2015 Nov; 11(8):2109-18. PubMed ID: 26169151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complement activation and protein adsorption by carbon nanotubes.
    Salvador-Morales C; Flahaut E; Sim E; Sloan J; Green ML; Sim RB
    Mol Immunol; 2006 Feb; 43(3):193-201. PubMed ID: 16199256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficiently stabilized spherical vaterite CaCO3 crystals by carbon nanotubes in biomimetic mineralization.
    Li W; Gao C
    Langmuir; 2007 Apr; 23(8):4575-82. PubMed ID: 17358086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-walled carbon nanotube surface control of complement recognition and activation.
    Andersen AJ; Robinson JT; Dai H; Hunter AC; Andresen TL; Moghimi SM
    ACS Nano; 2013 Feb; 7(2):1108-19. PubMed ID: 23301860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diameter selectivity of protein encapsulation in carbon nanotubes.
    Kang Y; Wang Q; Liu YC; Shen JW; Wu T
    J Phys Chem B; 2010 Mar; 114(8):2869-75. PubMed ID: 20146524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A critical review of the biological mechanisms underlying the in vivo and in vitro toxicity of carbon nanotubes: The contribution of physico-chemical characteristics.
    Johnston HJ; Hutchison GR; Christensen FM; Peters S; Hankin S; Aschberger K; Stone V
    Nanotoxicology; 2010 Jun; 4(2):207-46. PubMed ID: 20795897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interfacing carbon nanotubes with living mammalian cells and cytotoxicity issues.
    Cui HF; Vashist SK; Al-Rubeaan K; Luong JH; Sheu FS
    Chem Res Toxicol; 2010 Jul; 23(7):1131-47. PubMed ID: 20402485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Higher dispersion efficacy of functionalized carbon nanotubes in chemical and biological environments.
    Heister E; Lamprecht C; Neves V; Tîlmaciu C; Datas L; Flahaut E; Soula B; Hinterdorfer P; Coley HM; Silva SR; McFadden J
    ACS Nano; 2010 May; 4(5):2615-26. PubMed ID: 20380453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PEG-modified carbon nanotubes in biomedicine: current status and challenges ahead.
    Bottini M; Rosato N; Bottini N
    Biomacromolecules; 2011 Oct; 12(10):3381-93. PubMed ID: 21916410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chapter 6 - Carbon nanotubes as substrates/scaffolds for neural cell growth.
    Lee W; Parpura V
    Prog Brain Res; 2009; 180():110-25. PubMed ID: 20302831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulating cell adhesion dynamics on carbon nanotube monolayer engineered with extracellular matrix proteins.
    Cai N; Wong CC; Gong YX; Tan SC; Chan V; Liao K
    ACS Appl Mater Interfaces; 2010 Apr; 2(4):1038-47. PubMed ID: 20423124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.