BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 21669456)

  • 1. A highly radiopaque vertebroplasty cement using tetraiodinated o-carborane additive.
    Pepiol A; Teixidor F; Saralidze K; van der Marel C; Willems P; Voss L; Knetsch ML; Vinas C; Koole LH
    Biomaterials; 2011 Sep; 32(27):6389-98. PubMed ID: 21669456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of a highly-radiopaque iodine-containing acrylic bone cement for use in augmentation of vertebral compression fractures.
    Boelen EJ; Lewis G; Xu J; Slots T; Koole LH; van Hooy-Corstjens CS
    J Biomed Mater Res A; 2008 Jul; 86(1):76-88. PubMed ID: 17941018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iron oxide nanoparticles significantly enhances the injectability of apatitic bone cement for vertebroplasty.
    Vlad MD; del Valle LJ; Barracó M; Torres R; López J; Fernández E
    Spine (Phila Pa 1976); 2008 Oct; 33(21):2290-8. PubMed ID: 18827693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and characterization of a new vertebroplasty cement based on gold-containing PMMA microspheres.
    Jacobs E; Saralidze K; Roth AK; de Jong JJ; van den Bergh JP; Lataster A; Brans BT; Knetsch ML; Djordjevic I; Willems PC; Koole LH
    Biomaterials; 2016 Mar; 82():60-70. PubMed ID: 26751820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physical and mechanical properties of PMMA bone cement reinforced with nano-sized titania fibers.
    Khaled SM; Charpentier PA; Rizkalla AS
    J Biomater Appl; 2011 Feb; 25(6):515-37. PubMed ID: 20207779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of acrylic bone cements for vertebroplasty with bismuth salicylate as radiopaque agent.
    Hernández L; Fernández M; Collía F; Gurruchaga M; Goñi I
    Biomaterials; 2006 Jan; 27(1):100-7. PubMed ID: 16009418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Injectable acrylic bone cements for vertebroplasty based on a radiopaque hydroxyapatite. Formulation and rheological behaviour.
    Hernández L; Gurruchaga M; Goñi I
    J Mater Sci Mater Med; 2009 Jan; 20(1):89-97. PubMed ID: 18704657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Injection biomechanics of in vitro simulated vertebroplasty - correlation of injection force and cement viscosity.
    Gisep A; Boger A
    Biomed Mater Eng; 2009; 19(6):415-20. PubMed ID: 20231794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variation of the mechanical properties of PMMA to suit osteoporotic cancellous bone.
    Boger A; Bisig A; Bohner M; Heini P; Schneider E
    J Biomater Sci Polym Ed; 2008; 19(9):1125-42. PubMed ID: 18727856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compressive mechanical properties and cytocompatibility of bone-compliant, linoleic acid-modified bone cement in a bovine model.
    López A; Mestres G; Karlsson Ott M; Engqvist H; Ferguson SJ; Persson C; Helgason B
    J Mech Behav Biomed Mater; 2014 Apr; 32():245-256. PubMed ID: 24508711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocompatibility of a new radiopaque iodine-containing acrylic bone cement.
    van Hooy-Corstjens CS; Bulstra SK; Knetsch ML; Geusens P; Kuijer R; Koole LH
    J Biomed Mater Res B Appl Biomater; 2007 Feb; 80(2):339-44. PubMed ID: 16850468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New acrylic microspheres for arterial embolization: combining radiopacity for precise localization with immobilized thrombin to trigger local blood coagulation.
    Saralidze K; van Hooy-Corstjens CS; Koole LH; Knetsch ML
    Biomaterials; 2007 May; 28(15):2457-64. PubMed ID: 17257667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase composition, mechanical performance and in vitro biocompatibility of hydraulic setting calcium magnesium phosphate cement.
    Klammert U; Reuther T; Blank M; Reske I; Barralet JE; Grover LM; Kübler AC; Gbureck U
    Acta Biomater; 2010 Apr; 6(4):1529-35. PubMed ID: 19837194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elimination of barium sulphate from acrylic bone cements. Use of two iodine-containing monomers.
    Artola A; Gurruchaga M; Vázquez B; San Román J; Goñi I
    Biomaterials; 2003 Oct; 24(22):4071-80. PubMed ID: 12834603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical behaviour of a new acrylic radiopaque iodine-containing bone cement.
    van Hooy-Corstjens CS; Govaert LE; Spoelstra AB; Bulstra SK; Wetzels GM; Koole LH
    Biomaterials; 2004 Jun; 25(13):2657-67. PubMed ID: 14751752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Introduction of gelatin microspheres into an injectable calcium phosphate cement.
    Habraken WJ; de Jonge LT; Wolke JG; Yubao L; Mikos AG; Jansen JA
    J Biomed Mater Res A; 2008 Dec; 87(3):643-55. PubMed ID: 18189298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of new biodegradable bone cement compositions based on functional polysuccinates and methacrylic anhydride.
    Lukaszczyk J; Smiga-Matuszowicz M; Jaszcz K; Kaczmarek M
    J Biomater Sci Polym Ed; 2007; 18(7):825-42. PubMed ID: 17688743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of calcium aluminate cement for hard tissue repair: effects of lithium fluoride and maleic acid on setting behavior, compressive strength, and biocompatibility.
    Oh SH; Choi SY; Lee YK; Kim KN
    J Biomed Mater Res; 2002 Dec; 62(4):593-9. PubMed ID: 12221708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fiber-enriched double-setting calcium phosphate bone cement.
    dos Santos LA; Carrodéguas RG; Boschi AO; Fonseca de Arruda AC
    J Biomed Mater Res A; 2003 May; 65(2):244-50. PubMed ID: 12734819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Percutaneous vertebroplasty with EH composite material: an experiment study].
    Zheng ZM; Cui LY; Guo JW; Kuang GM; Dong ZY; Liu YR; Zhao WD
    Zhonghua Yi Xue Za Zhi; 2006 Dec; 86(47):3345-8. PubMed ID: 17313831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.