These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 21670208)

  • 21. Role of physiological ClC-1 Cl- ion channel regulation for the excitability and function of working skeletal muscle.
    Pedersen TH; Riisager A; de Paoli FV; Chen TY; Nielsen OB
    J Gen Physiol; 2016 Apr; 147(4):291-308. PubMed ID: 27022190
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of proctolin on contractions, membrane resistance, and non-voltage-dependent sarcolemmal ion channels in crustacean muscle fibers.
    Erxleben CF; deSantis A; Rathmayer W
    J Neurosci; 1995 Jun; 15(6):4356-69. PubMed ID: 7540673
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Action potential repolarization enabled by Ca++ channel deactivation in PSpice simulation of smooth muscle propagation.
    Ramasamy L; Sperelakis N
    Biomed Eng Online; 2005 Dec; 4():71. PubMed ID: 16384537
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fatigue-induced change in T-system excitability and its major cause in rat fast-twitch skeletal muscle in vivo.
    Watanabe D; Wada M
    J Physiol; 2020 Nov; 598(22):5195-5211. PubMed ID: 32833287
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of sarcolemma action potentials and excitability in muscle fatigue.
    Balog EM; Thompson LV; Fitts RH
    J Appl Physiol (1985); 1994 May; 76(5):2157-62. PubMed ID: 8063681
    [TBL] [Abstract][Full Text] [Related]  

  • 26. NHE- and diffusion-dependent proton fluxes across the tubular system membranes of fast-twitch muscle fibers of the rat.
    Launikonis BS; Cully TR; Csernoch L; Stephenson DG
    J Gen Physiol; 2018 Jan; 150(1):95-110. PubMed ID: 29229646
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of transverse-tubular chloride conductance on excitability in skinned skeletal muscle fibres of rat and toad.
    Coonan JR; Lamb GD
    J Physiol; 1998 Jun; 509 ( Pt 2)(Pt 2):551-64. PubMed ID: 9575303
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of membrane properties on skeletal muscle fiber excitability: a sensitivity analysis.
    Fortune E; Lowery MM
    Med Biol Eng Comput; 2012 Jun; 50(6):617-29. PubMed ID: 22430618
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The role of the sarcolemma action potential in fatigue.
    Fuglevand AJ
    Adv Exp Med Biol; 1995; 384():101-8. PubMed ID: 8585442
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modelling action potentials and membrane currents of mammalian skeletal muscle fibres in coherence with potassium concentration changes in the T-tubular system.
    Wallinga W; Meijer SL; Alberink MJ; Vliek M; Wienk ED; Ypey DL
    Eur Biophys J; 1999; 28(4):317-29. PubMed ID: 10394624
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrical characteristics of human ankle dorsi- and plantar-flexor muscles. Comparative responses during fatiguing stimulation and recovery.
    Galea V
    Eur J Appl Physiol; 2001 Jul; 85(1-2):130-40. PubMed ID: 11513306
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evidence that the Na+-K+ leak/pump ratio contributes to the difference in endurance between fast- and slow-twitch muscles.
    Clausen T; Overgaard K; Nielsen OB
    Acta Physiol Scand; 2004 Feb; 180(2):209-16. PubMed ID: 14738479
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ion channels and ion transporters of the transverse tubular system of skeletal muscle.
    Jurkat-Rott K; Fauler M; Lehmann-Horn F
    J Muscle Res Cell Motil; 2006; 27(5-7):275-90. PubMed ID: 16933023
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of low cytoplasmic [ATP] on excitation-contraction coupling in fast-twitch muscle fibres of the rat.
    Dutka TL; Lamb GD
    J Physiol; 2004 Oct; 560(Pt 2):451-68. PubMed ID: 15308682
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differential contractile impairment of fast- and slow-twitch skeletal muscles in a rat model of doxorubicin-induced congestive heart failure.
    Ertunc M; Sara Y; Korkusuz P; Onur R
    Pharmacology; 2009; 84(4):240-8. PubMed ID: 19776660
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of fatiguing stimulation on intracellular Na+ and K+ in frog skeletal muscle.
    Balog EM; Fitts RH
    J Appl Physiol (1985); 1996 Aug; 81(2):679-85. PubMed ID: 8872634
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A subpopulation of rat muscle fibers maintains an assessable excitation-contraction coupling mechanism after long-standing denervation despite lost contractility.
    Squecco R; Carraro U; Kern H; Pond A; Adami N; Biral D; Vindigni V; Boncompagni S; Pietrangelo T; Bosco G; Fanò G; Marini M; Abruzzo PM; Germinario E; Danieli-Betto D; Protasi F; Francini F; Zampieri S
    J Neuropathol Exp Neurol; 2009 Dec; 68(12):1256-68. PubMed ID: 19915489
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sarcolemmal excitability as investigated with M-waves after eccentric exercise in humans.
    Piitulainen H; Komi P; Linnamo V; Avela J
    J Electromyogr Kinesiol; 2008 Aug; 18(4):672-81. PubMed ID: 17331740
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computer simulation of field distribution and excitation of denervated muscle fibers caused by surface electrodes.
    Reichel M; Mayr W; Rattay F
    Artif Organs; 1999 May; 23(5):453-6. PubMed ID: 10378941
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reducing chloride conductance prevents hyperkalaemia-induced loss of twitch force in rat slow-twitch muscle.
    van Emst MG; Klarenbeek S; Schot A; Plomp JJ; Doornenbal A; Everts ME
    J Physiol; 2004 Nov; 561(Pt 1):169-81. PubMed ID: 15345748
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.