BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 2167075)

  • 1. 13C and 31P NMR studies of the pentose phosphate pathway in human erythrocytes.
    Kuchel PW; Berthon HA; Bubb WA; McIntyre LM; Nygh NK; Thorburn DR
    Biomed Biochim Acta; 1990; 49(2-3):S105-10. PubMed ID: 2167075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer simulation of the pentose-phosphate pathway and associated metabolism used in conjunction with NMR experimental data from human erythrocytes.
    Kuchel PW; Berthon HA; Bubb WA; Bulliman BT; Collins JG
    Biomed Biochim Acta; 1990; 49(8-9):757-70. PubMed ID: 2082920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of computer simulations of the F-type and L-type non-oxidative hexose monophosphate shunts with 31P-NMR experimental data from human erythrocytes.
    McIntyre LM; Thorburn DR; Bubb WA; Kuchel PW
    Eur J Biochem; 1989 Mar; 180(2):399-420. PubMed ID: 2924774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 13C n.m.r. isotopomer and computer-simulation studies of the non-oxidative pentose phosphate pathway of human erythrocytes.
    Berthon HA; Bubb WA; Kuchel PW
    Biochem J; 1993 Dec; 296 ( Pt 2)(Pt 2):379-87. PubMed ID: 8257428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The involvement of fructose 2,6-bisphosphate in substrate cycle control in the nonoxidative stage of the pentose phosphate pathway. A phosphorus magnetic resonance spectroscopy study.
    Belyaeva NF; Golubev MA; Grigorovich JA; Dubinsky ZV; Semenova NA; Pitkänen E; Korovkin BF
    Experientia; 1994 Aug; 50(8):780-4. PubMed ID: 8070536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The pentose phosphate pathway of cellulolytic clostridia relies on 6-phosphofructokinase instead of transaldolase.
    Koendjbiharie JG; Hon S; Pabst M; Hooftman R; Stevenson DM; Cui J; Amador-Noguez D; Lynd LR; Olson DG; van Kranenburg R
    J Biol Chem; 2020 Feb; 295(7):1867-1878. PubMed ID: 31871051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic flux and metabolic network analysis of Penicillium chrysogenum using 2D [13C, 1H] COSY NMR measurements and cumulative bondomer simulation.
    van Winden WA; van Gulik WM; Schipper D; Verheijen PJ; Krabben P; Vinke JL; Heijnen JJ
    Biotechnol Bioeng; 2003 Jul; 83(1):75-92. PubMed ID: 12740935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The pentose phosphate pathway in Trypanosoma cruzi.
    Maugeri DA; Cazzulo JJ
    FEMS Microbiol Lett; 2004 May; 234(1):117-23. PubMed ID: 15109729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pentose phosphate pathway in rat colonic epithelium.
    Butler RN; Arora KK; Collins JG; Flanigan I; Lawson MJ; Roberts-Thomson IC; Williams JF
    Biochem Int; 1990 Oct; 22(2):249-60. PubMed ID: 1965276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induction of millimolar amounts of 5-phosphoribosyl-1-pyrophosphate in human erythrocytes by incubation in inosine-pyruvate-phosphate medium. A 31P-NMR study.
    Petersen A; Quistorff B
    Biomed Biochim Acta; 1990; 49(2-3):S111-6. PubMed ID: 1696811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular applications of 31P and 13C nuclear magnetic resonance.
    Shulman RG; Brown TR; Ugurbil K; Ogawa S; Cohen SM; den Hollander JA
    Science; 1979 Jul; 205(4402):160-6. PubMed ID: 36664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon-13-enriched carbohydrates: preparation of triose, tetrose, and pentose phosphates.
    Serianni AS; Pierce J; Barker R
    Biochemistry; 1979 Apr; 18(7):1192-9. PubMed ID: 218615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The significance of sedoheptulose 1,7-bisphosphate in the metabolism and regulation of the pentose pathway in liver.
    Williams JF; Blackmore PF; Arora KK
    Biochem Int; 1985 Oct; 11(4):599-610. PubMed ID: 4084320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A carbon-13 nuclear magnetic resonance investigation of the metabolic fluxes associated with glucose metabolism in human erythrocytes.
    Schrader MC; Eskey CJ; Simplaceanu V; Ho C
    Biochim Biophys Acta; 1993 Sep; 1182(2):162-78. PubMed ID: 8357848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of fluxes through the pentose phosphate pathway in erythrocytes from individuals with sickle cell anemia by carbon-13 nuclear magnetic resonance spectroscopy.
    Schrader MC; Simplaceanu V; Ho C
    Biochim Biophys Acta; 1993 Sep; 1182(2):179-88. PubMed ID: 8357849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ribose-5-phosphate biosynthesis in Methanocaldococcus jannaschii occurs in the absence of a pentose-phosphate pathway.
    Grochowski LL; Xu H; White RH
    J Bacteriol; 2005 Nov; 187(21):7382-9. PubMed ID: 16237021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High control coefficient of transketolase in the nonoxidative pentose phosphate pathway of human erythrocytes: NMR, antibody, and computer simulation studies.
    Berthon HA; Kuchel PW; Nixon PF
    Biochemistry; 1992 Dec; 31(51):12792-8. PubMed ID: 1463749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitation of erythrocyte pentose pathway flux with [2-13C]glucose and 1H NMR analysis of the lactate methyl signal.
    Delgado TC; Castro MM; Geraldes CF; Jones JG
    Magn Reson Med; 2004 Jun; 51(6):1283-6. PubMed ID: 15170851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of 31P and 13C NMR to study enzyme mechanisms.
    Villafranca JJ
    Fed Proc; 1984 Aug; 43(11):2640-7. PubMed ID: 6378670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A multinuclear NMR study of 2,3-bisphosphoglycerate metabolism in the human erythrocyte.
    Oxley ST; Porteous R; Brindle KM; Boyd J; Campbell ID
    Biochim Biophys Acta; 1984 Sep; 805(1):19-24. PubMed ID: 6477971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.