These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 21671030)
1. Competition in the presence of a virus in an aquatic system: an SIS model in the chemostat. Northcott K; Imran M; Wolkowicz GS J Math Biol; 2012 May; 64(6):1043-86. PubMed ID: 21671030 [TBL] [Abstract][Full Text] [Related]
2. Competition in chemostat-type equations with two habitats. Nakaoka S; Takeuchi Y Math Biosci; 2006 May; 201(1-2):157-71. PubMed ID: 16448673 [TBL] [Abstract][Full Text] [Related]
3. Coexistence of three microbial populations competing for three complementary nutrients in a chemostat. Vayenas DV; Pavlou S Math Biosci; 1999 Oct; 161(1-2):1-13. PubMed ID: 10546438 [TBL] [Abstract][Full Text] [Related]
4. Consequences of symbiosis for food web dynamics. Kooi BW; Kuijper LD; Kooijman SA J Math Biol; 2004 Sep; 49(3):227-71. PubMed ID: 15293013 [TBL] [Abstract][Full Text] [Related]
5. Multiple limit cycles in the chemostat with variable yield. Pilyugin SS; Waltman P Math Biosci; 2003 Apr; 182(2):151-66. PubMed ID: 12591622 [TBL] [Abstract][Full Text] [Related]
6. Multiple attractors and boundary crises in a tri-trophic food chain. Boer MP; Kooi BW; Kooijman SA Math Biosci; 2001 Feb; 169(2):109-28. PubMed ID: 11166318 [TBL] [Abstract][Full Text] [Related]
7. Bacteriophage and bacteria in a flow reactor. Jones DA; Smith HL Bull Math Biol; 2011 Oct; 73(10):2357-83. PubMed ID: 21221829 [TBL] [Abstract][Full Text] [Related]
8. Study of a virus-bacteria interaction model in a chemostat: application of geometrical singular perturbation theory. Poggiale JC; Auger P; Cordoleani F; Nguyen-Huu T Philos Trans A Math Phys Eng Sci; 2009 Dec; 367(1908):4685-97. PubMed ID: 19884175 [TBL] [Abstract][Full Text] [Related]
9. Persistence of bacteria and phages in a chemostat. Smith HL; Thieme HR J Math Biol; 2012 May; 64(6):951-79. PubMed ID: 21656281 [TBL] [Abstract][Full Text] [Related]
10. Coexistence in the chemostat as a result of metabolic by-products. Hesseler J; Schmidt JK; Reichl U; Flockerzi D J Math Biol; 2006 Oct; 53(4):556-84. PubMed ID: 16819650 [TBL] [Abstract][Full Text] [Related]
11. Oscillations of two competing microbial populations in configurations of two interconnected chemostats. Lenas P; Thomopoulos NA; Vayenas DV; Pavlou S Math Biosci; 1998 Feb; 148(1):43-63. PubMed ID: 9597824 [TBL] [Abstract][Full Text] [Related]
12. Periodic coexistence in the chemostat with three species competing for three essential resources. Li B Math Biosci; 2001 Nov; 174(1):27-40. PubMed ID: 11595255 [TBL] [Abstract][Full Text] [Related]
13. Bacteriophage-resistant and bacteriophage-sensitive bacteria in a chemostat. Han Z; Smith HL Math Biosci Eng; 2012 Oct; 9(4):737-65. PubMed ID: 23311420 [TBL] [Abstract][Full Text] [Related]
14. Transient oscillations induced by delayed growth response in the chemostat. Xia H; Wolkowicz GS; Wang L J Math Biol; 2005 May; 50(5):489-530. PubMed ID: 15772824 [TBL] [Abstract][Full Text] [Related]
15. Supercritical and subcritical Hopf-bifurcations in a two-delayed prey-predator system with density-dependent mortality of predator and strong Allee effect in prey. Banerjee J; Sasmal SK; Layek RK Biosystems; 2019 Jun; 180():19-37. PubMed ID: 30851345 [TBL] [Abstract][Full Text] [Related]
16. Plasmid-bearing, plasmid-free organisms competing for two complementary nutrients in a chemostat. Hsu SB; Tzeng YH Math Biosci; 2002; 179(2):183-206. PubMed ID: 12208615 [TBL] [Abstract][Full Text] [Related]
17. Periodic, quasi-periodic, and chaotic coexistence of two competing microbial populations in a periodically operated chemostat. Lenas P; Pavlou S Math Biosci; 1994 May; 121(1):61-110. PubMed ID: 8204991 [TBL] [Abstract][Full Text] [Related]
18. Complex dynamics of microbial competition in the gradostat. Gaki A; Theodorou A; Vayenas DV; Pavlou S J Biotechnol; 2009 Jan; 139(1):38-46. PubMed ID: 18809443 [TBL] [Abstract][Full Text] [Related]
19. Coexistence phenomena and global bifurcation structure in a chemostat-like model with species-dependent diffusion rates. Castella F; Madec S J Math Biol; 2014 Jan; 68(1-2):377-415. PubMed ID: 23263380 [TBL] [Abstract][Full Text] [Related]
20. A density-dependent model of competition for one resource in the chemostat. Fekih-Salem R; Lobry C; Sari T Math Biosci; 2017 Apr; 286():104-122. PubMed ID: 28212840 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]