These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 2167129)
1. Solid-state 13C NMR study of tyrosine protonation in dark-adapted bacteriorhodopsin. Herzfeld J; Das Gupta SK; Farrar MR; Harbison GS; McDermott AE; Pelletier SL; Raleigh DP; Smith SO; Winkel C; Lugtenburg J Biochemistry; 1990 Jun; 29(23):5567-74. PubMed ID: 2167129 [TBL] [Abstract][Full Text] [Related]
2. Mechanism of proton pumping in bacteriorhodopsin by solid-state NMR: the protonation state of tyrosine in the light-adapted and M states. McDermott AE; Thompson LK; Winkel C; Farrar MR; Pelletier S; Lugtenburg J; Herzfeld J; Griffin RG Biochemistry; 1991 Aug; 30(34):8366-71. PubMed ID: 1653012 [TBL] [Abstract][Full Text] [Related]
3. Structure and protein environment of the retinal chromophore in light- and dark-adapted bacteriorhodopsin studied by solid-state NMR. Smith SO; de Groot HJ; Gebhard R; Courtin JM; Lugtenburg J; Herzfeld J; Griffin RG Biochemistry; 1989 Oct; 28(22):8897-904. PubMed ID: 2605231 [TBL] [Abstract][Full Text] [Related]
4. Solid state NMR study of [epsilon-13C]Lys-bacteriorhodopsin: Schiff base photoisomerization. Farrar MR; Lakshmi KV; Smith SO; Brown RS; Raap J; Lugtenburg J; Griffin RG; Herzfeld J Biophys J; 1993 Jul; 65(1):310-5. PubMed ID: 8369438 [TBL] [Abstract][Full Text] [Related]
5. Solid-state 13C and 15N NMR study of the low pH forms of bacteriorhodopsin. de Groot HJ; Smith SO; Courtin J; van den Berg E; Winkel C; Lugtenburg J; Griffin RG; Herzfeld J Biochemistry; 1990 Jul; 29(29):6873-83. PubMed ID: 2168744 [TBL] [Abstract][Full Text] [Related]
6. Solid-state 13C NMR of the retinal chromophore in photointermediates of bacteriorhodopsin: characterization of two forms of M. Smith SO; Courtin J; van den Berg E; Winkel C; Lugtenburg J; Herzfeld J; Griffin RG Biochemistry; 1989 Jan; 28(1):237-43. PubMed ID: 2706247 [TBL] [Abstract][Full Text] [Related]
7. Early and late M intermediates in the bacteriorhodopsin photocycle: a solid-state NMR study. Hu JG; Sun BQ; Bizounok M; Hatcher ME; Lansing JC; Raap J; Verdegem PJ; Lugtenburg J; Griffin RG; Herzfeld J Biochemistry; 1998 Jun; 37(22):8088-96. PubMed ID: 9609703 [TBL] [Abstract][Full Text] [Related]
8. Solid state 13C and 15N NMR investigations of the N intermediate of bacteriorhodopsin. Lakshmi KV; Farrar MR; Raap J; Lugtenburg J; Griffin RG; Herzfeld J Biochemistry; 1994 Aug; 33(30):8853-7. PubMed ID: 8043572 [TBL] [Abstract][Full Text] [Related]
9. Control of the pump cycle in bacteriorhodopsin: mechanisms elucidated by solid-state NMR of the D85N mutant. Hatcher ME; Hu JG; Belenky M; Verdegem P; Lugtenburg J; Griffin RG; Herzfeld J Biophys J; 2002 Feb; 82(2):1017-29. PubMed ID: 11806941 [TBL] [Abstract][Full Text] [Related]
11. Stability of the C-terminal alpha-helical domain of bacteriorhodopsin that protrudes from the membrane surface, as studied by high-resolution solid-state 13C NMR. Yamaguchi S; Tuzi S; Seki T; Tanio M; Needleman R; Lanyi JK; Naito A; Saitô H J Biochem; 1998 Jan; 123(1):78-86. PubMed ID: 9504412 [TBL] [Abstract][Full Text] [Related]
12. Tyrosine and carboxyl protonation changes in the bacteriorhodopsin photocycle. 2. Tyrosines-26 and -64. Roepe P; Scherrer P; Ahl PL; Das Gupta SK; Bogomolni RA; Herzfeld J; Rothschild KJ Biochemistry; 1987 Oct; 26(21):6708-17. PubMed ID: 3427039 [TBL] [Abstract][Full Text] [Related]
13. Fourier transform infrared difference spectroscopy of bacteriorhodopsin and its photoproducts regenerated with deuterated tyrosine. Dollinger G; Eisenstein L; Lin SL; Nakanishi K; Termini J Biochemistry; 1986 Oct; 25(21):6524-33. PubMed ID: 3790539 [TBL] [Abstract][Full Text] [Related]
14. Significance of low-frequency local fluctuation motions in the transmembrane B and C alpha-helices of bacteriorhodopsin, to facilitate efficient proton uptake from the cytoplasmic surface, as revealed by site-directed solid-state 13C NMR. Kira A; Tanio M; Tuzi S; Saitô H Eur Biophys J; 2004 Nov; 33(7):580-8. PubMed ID: 15133647 [TBL] [Abstract][Full Text] [Related]
15. High-resolution solid state 13C NMR of bacteriorhodopsin: characterization of [4-13C]Asp resonances. Metz G; Siebert F; Engelhard M Biochemistry; 1992 Jan; 31(2):455-62. PubMed ID: 1731904 [TBL] [Abstract][Full Text] [Related]
16. Alteration of conformation and dynamics of bacteriorhodopsin induced by protonation of Asp 85 and deprotonation of Schiff base as studied by 13C NMR. Kawase Y; Tanio M; Kira A; Yamaguchi S; Tuzi S; Naito A; Kataoka M; Lanyi JK; Needleman R; Saitô H Biochemistry; 2000 Nov; 39(47):14472-80. PubMed ID: 11087400 [TBL] [Abstract][Full Text] [Related]
18. Rotational resonance NMR study of the active site structure in bacteriorhodopsin: conformation of the Schiff base linkage. Thompson LK; McDermott AE; Raap J; van der Wielen CM; Lugtenburg J; Herzfeld J; Griffin RG Biochemistry; 1992 Sep; 31(34):7931-8. PubMed ID: 1510979 [TBL] [Abstract][Full Text] [Related]
19. Deprotonation of tyrosines in bacteriorhodopsin as studied by Fourier transform infrared spectroscopy with deuterium and nitrate labeling. Lin SL; Ormos P; Eisenstein L; Govindjee R; Konno K; Nakanishi K Biochemistry; 1987 Dec; 26(25):8327-31. PubMed ID: 3442658 [TBL] [Abstract][Full Text] [Related]
20. Tyrosine protonation changes in bacteriorhodopsin. A Fourier transform infrared study of BR548 and its primary photoproduct. Roepe PD; Ahl PL; Herzfeld J; Lugtenburg J; Rothschild KJ J Biol Chem; 1988 Apr; 263(11):5110-7. PubMed ID: 3356682 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]