These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 2167129)
21. Tyrosine and carboxyl protonation changes in the bacteriorhodopsin photocycle. 1. M412 and L550 intermediates. Roepe P; Ahl PL; Das Gupta SK; Herzfeld J; Rothschild KJ Biochemistry; 1987 Oct; 26(21):6696-707. PubMed ID: 3427038 [TBL] [Abstract][Full Text] [Related]
22. 13C NMR study on conformation and dynamics of the transmembrane alpha-helices, loops, and C-terminus of [3-13C]Ala-labeled bacteriorhodopsin. Tuzi S; Naito A; Saitô H Biochemistry; 1994 Dec; 33(50):15046-52. PubMed ID: 7999762 [TBL] [Abstract][Full Text] [Related]
23. Solid-state nitrogen-15 nuclear magnetic resonance study of the Schiff base in bacteriorhodopsin. Harbison GS; Herzfeld J; Griffin RG Biochemistry; 1983 Jan; 22(1):1-4. PubMed ID: 6830754 [TBL] [Abstract][Full Text] [Related]
24. Time-resolved ultraviolet resonance Raman studies of protein structure: application to bacteriorhodopsin. Ames JB; Ros M; Raap J; Lugtenburg J; Mathies RA Biochemistry; 1992 Jun; 31(23):5328-34. PubMed ID: 1606157 [TBL] [Abstract][Full Text] [Related]
25. Deprotonation of the Schiff base of bacteriorhodopsin is obligate in light-induced proton pumping. Longstaff C; Rando RR Biochemistry; 1987 Sep; 26(19):6107-13. PubMed ID: 2825771 [TBL] [Abstract][Full Text] [Related]
26. Titration of aspartate-85 in bacteriorhodopsin: what it says about chromophore isomerization and proton release. Balashov SP; Imasheva ES; Govindjee R; Ebrey TG Biophys J; 1996 Jan; 70(1):473-81. PubMed ID: 8770224 [TBL] [Abstract][Full Text] [Related]
27. Regio-selective detection of dynamic structure of transmembrane alpha-helices as revealed from (13)C NMR spectra of [3-13C]Ala-labeled bacteriorhodopsin in the presence of Mn2+ ion. Tuzi S; Hasegawa J; Kawaminami R; Naito A; Saitô H Biophys J; 2001 Jul; 81(1):425-34. PubMed ID: 11423425 [TBL] [Abstract][Full Text] [Related]
28. Evidence for a tyrosine protonation change during the primary phototransition of bacteriorhodopsin at low temperature. Rothschild KJ; Roepe P; Ahl PL; Earnest TN; Bogomolni RA; Das Gupta SK; Mulliken CM; Herzfeld J Proc Natl Acad Sci U S A; 1986 Jan; 83(2):347-51. PubMed ID: 3001733 [TBL] [Abstract][Full Text] [Related]
29. Effect of the arginine-82 to alanine mutation in bacteriorhodopsin on dark adaptation, proton release, and the photochemical cycle. Balashov SP; Govindjee R; Kono M; Imasheva E; Lukashev E; Ebrey TG; Crouch RK; Menick DR; Feng Y Biochemistry; 1993 Oct; 32(39):10331-43. PubMed ID: 8399176 [TBL] [Abstract][Full Text] [Related]
30. Location of a cation-binding site in the loop between helices F and G of bacteriorhodopsin as studied by 13C NMR. Tuzi S; Yamaguchi S; Tanio M; Konishi H; Inoue S; Naito A; Needleman R; Lanyi JK; Saitô H Biophys J; 1999 Mar; 76(3):1523-31. PubMed ID: 10049332 [TBL] [Abstract][Full Text] [Related]
31. Vibrational spectroscopy of bacteriorhodopsin mutants: I. Tyrosine-185 protonates and deprotonates during the photocycle. Braiman MS; Mogi T; Stern LJ; Hackett NR; Chao BH; Khorana HG; Rothschild KJ Proteins; 1988; 3(4):219-29. PubMed ID: 2843849 [TBL] [Abstract][Full Text] [Related]
32. Solid-state 13C-NMR of [(3-13C)Pro]bacteriorhodopsin and [(4-13C)Pro]bacteriorhodopsin: evidence for a flexible segment of the C-terminal tail. Engelhard M; Finkler S; Metz G; Siebert F Eur J Biochem; 1996 Feb; 235(3):526-33. PubMed ID: 8654397 [TBL] [Abstract][Full Text] [Related]
33. On the protein (tyrosine)-chromophore (protonated Schiff base) coupling in bacteriorhodopsin. Hanamoto JH; Dupuis P; El-Sayed MA Proc Natl Acad Sci U S A; 1984 Nov; 81(22):7083-7. PubMed ID: 6594682 [TBL] [Abstract][Full Text] [Related]
34. Molecular origin of the pH dependence of tyrosine D oxidation kinetics and radical stability in photosystem II. Hienerwadel R; Diner BA; Berthomieu C Biochim Biophys Acta; 2008 Jun; 1777(6):525-31. PubMed ID: 18452701 [TBL] [Abstract][Full Text] [Related]
35. Arginine activity in the proton-motive photocycle of bacteriorhodopsin: solid-state NMR studies of the wild-type and D85N proteins. Petkova AT; Hu JG; Bizounok M; Simpson M; Griffin RG; Herzfeld J Biochemistry; 1999 Feb; 38(5):1562-72. PubMed ID: 9931023 [TBL] [Abstract][Full Text] [Related]
36. Conformation and dynamics of [3-13C]Ala- labeled bacteriorhodopsin and bacterioopsin, induced by interaction with retinal and its analogs, as studied by 13C nuclear magnetic resonance. Tuzi S; Yamaguchi S; Naito A; Needleman R; Lanyi JK; Saitô H Biochemistry; 1996 Jun; 35(23):7520-7. PubMed ID: 8652531 [TBL] [Abstract][Full Text] [Related]
37. Solid-state 13C NMR detection of a perturbed 6-s-trans chromophore in bacteriorhodopsin. Harbison GS; Smith SO; Pardoen JA; Courtin JM; Lugtenburg J; Herzfeld J; Mathies RA; Griffin RG Biochemistry; 1985 Nov; 24(24):6955-62. PubMed ID: 4074732 [TBL] [Abstract][Full Text] [Related]
38. pH-induced structural changes in bacteriorhodopsin studied by Fourier transform infrared spectroscopy. Száraz S; Oesterhelt D; Ormos P Biophys J; 1994 Oct; 67(4):1706-12. PubMed ID: 7819502 [TBL] [Abstract][Full Text] [Related]
39. 13C magic angle spinning NMR study of the light-induced and temperature-dependent changes in Rhodobacter sphaeroides R26 reaction centers enriched in [4'-13C]tyrosine. Fischer MR; de Groot HJ; Raap J; Winkel C; Hoff AJ; Lugtenburg J Biochemistry; 1992 Nov; 31(45):11038-49. PubMed ID: 1445842 [TBL] [Abstract][Full Text] [Related]
40. High resolution 13C-solid state NMR of bacteriorhodopsin: assignment of specific aspartic acids and structural implications of single site mutations. Engelhard M; Hess B; Metz G; Kreutz W; Siebert F; Soppa J; Oesterhelt D Eur Biophys J; 1990; 18(1):17-24. PubMed ID: 1968385 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]