BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 21671316)

  • 1. Light-activated gene editing with a photocaged zinc-finger nuclease.
    Chou C; Deiters A
    Angew Chem Int Ed Engl; 2011 Jul; 50(30):6839-42. PubMed ID: 21671316
    [No Abstract]   [Full Text] [Related]  

  • 2. Monomeric site-specific nucleases for genome editing.
    Kleinstiver BP; Wolfs JM; Kolaczyk T; Roberts AK; Hu SX; Edgell DR
    Proc Natl Acad Sci U S A; 2012 May; 109(21):8061-6. PubMed ID: 22566637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA).
    Sander JD; Dahlborg EJ; Goodwin MJ; Cade L; Zhang F; Cifuentes D; Curtin SJ; Blackburn JS; Thibodeau-Beganny S; Qi Y; Pierick CJ; Hoffman E; Maeder ML; Khayter C; Reyon D; Dobbs D; Langenau DM; Stupar RM; Giraldez AJ; Voytas DF; Peterson RT; Yeh JR; Joung JK
    Nat Methods; 2011 Jan; 8(1):67-9. PubMed ID: 21151135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthetic zinc finger nuclease design and rapid assembly.
    Osborn MJ; DeFeo AP; Blazar BR; Tolar J
    Hum Gene Ther; 2011 Sep; 22(9):1155-65. PubMed ID: 21663559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro assessment of zinc finger nuclease activity.
    Cathomen T; Söllü C
    Methods Mol Biol; 2010; 649():227-35. PubMed ID: 20680837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeted manipulation of mammalian genomes using designed zinc finger nucleases.
    Kandavelou K; Ramalingam S; London V; Mani M; Wu J; Alexeev V; Civin CI; Chandrasegaran S
    Biochem Biophys Res Commun; 2009 Oct; 388(1):56-61. PubMed ID: 19635463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zinc-finger nucleases transition to the CoDA.
    Segal DJ
    Nat Methods; 2011 Jan; 8(1):53-5. PubMed ID: 21191373
    [No Abstract]   [Full Text] [Related]  

  • 8. Design of a colicin E7 based chimeric zinc-finger nuclease.
    Németh E; Schilli GK; Nagy G; Hasenhindl C; Gyurcsik B; Oostenbrink C
    J Comput Aided Mol Des; 2014 Aug; 28(8):841-50. PubMed ID: 24952471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repeatable construction method for engineered zinc finger nuclease based on overlap extension PCR and TA-cloning.
    Fujii W; Kano K; Sugiura K; Naito K
    PLoS One; 2013; 8(3):e59801. PubMed ID: 23536890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Progress in zinc finger nuclease engineering for targeted genome modification].
    Xiao A; Hu YY; Wang WY; Yang ZP; Wang ZX; Huang P; Tong XJ; Zhang B; Lin S
    Yi Chuan; 2011 Jul; 33(7):665-83. PubMed ID: 22049679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineered zinc finger proteins for manipulation of the human mitochondrial genome.
    Minczuk M
    Methods Mol Biol; 2010; 649():257-70. PubMed ID: 20680840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A toolbox and procedural notes for characterizing novel zinc finger nucleases for genome editing in plant cells.
    Tovkach A; Zeevi V; Tzfira T
    Plant J; 2009 Feb; 57(4):747-57. PubMed ID: 18980651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome editing with engineered zinc finger nucleases.
    Urnov FD; Rebar EJ; Holmes MC; Zhang HS; Gregory PD
    Nat Rev Genet; 2010 Sep; 11(9):636-46. PubMed ID: 20717154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zinc finger nuclease technology: advances and obstacles in modelling and treating genetic disorders.
    Jabalameli HR; Zahednasab H; Karimi-Moghaddam A; Jabalameli MR
    Gene; 2015 Mar; 558(1):1-5. PubMed ID: 25536166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeted mutagenesis in the sea urchin embryo using zinc-finger nucleases.
    Ochiai H; Fujita K; Suzuki K; Nishikawa M; Shibata T; Sakamoto N; Yamamoto T
    Genes Cells; 2010 Aug; 15(8):875-85. PubMed ID: 20604805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid mutation of endogenous zebrafish genes using zinc finger nucleases made by Oligomerized Pool ENgineering (OPEN).
    Foley JE; Yeh JR; Maeder ML; Reyon D; Sander JD; Peterson RT; Joung JK
    PLoS One; 2009; 4(2):e4348. PubMed ID: 19198653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeted editing of goat genome with modular-assembly zinc finger nucleases based on activity prediction by computational molecular modeling.
    Xiong K; Li S; Zhang H; Cui Y; Yu D; Li Y; Sun W; Fu Y; Teng Y; Liu Z; Zhou X; Xiao P; Li J; Liu H; Chen J
    Mol Biol Rep; 2013 Jul; 40(7):4251-6. PubMed ID: 23645027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generating a Genome Editing Nuclease for Targeted Mutagenesis in Human Cells.
    He Z; Kee K
    Methods Mol Biol; 2017; 1498():153-162. PubMed ID: 27709574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photocontrol of tyrosine phosphorylation in mammalian cells via genetic encoding of photocaged tyrosine.
    Arbely E; Torres-Kolbus J; Deiters A; Chin JW
    J Am Chem Soc; 2012 Jul; 134(29):11912-5. PubMed ID: 22758385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures.
    Doyon Y; Vo TD; Mendel MC; Greenberg SG; Wang J; Xia DF; Miller JC; Urnov FD; Gregory PD; Holmes MC
    Nat Methods; 2011 Jan; 8(1):74-9. PubMed ID: 21131970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.