These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 21671452)

  • 1. In situ observation of voltage-induced multilevel resistive switching in solid electrolyte memory.
    Choi SJ; Park GS; Kim KH; Cho S; Yang WY; Li XS; Moon JH; Lee KJ; Kim K
    Adv Mater; 2011 Aug; 23(29):3272-7. PubMed ID: 21671452
    [No Abstract]   [Full Text] [Related]  

  • 2. Ion-current diode with aqueous gel/SiO(2) nanofilm interfaces.
    Koo HJ; Chang ST; Velev OD
    Small; 2010 Jul; 6(13):1393-7. PubMed ID: 20564481
    [No Abstract]   [Full Text] [Related]  

  • 3. Regenerable resistive switching in silicon oxide based nanojunctions.
    Cavallini M; Hemmatian Z; Riminucci A; Prezioso M; Morandi V; Murgia M
    Adv Mater; 2012 Mar; 24(9):1197-201. PubMed ID: 22362565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolyte-based ReRAM.
    Liu Q; Sun J; Lv H; Long S; Yin K; Wan N; Li Y; Sun L; Liu M
    Adv Mater; 2012 Apr; 24(14):1844-9. PubMed ID: 22407902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resistive switching in nanogap systems on SiO2 substrates.
    Yao J; Zhong L; Zhang Z; He T; Jin Z; Wheeler PJ; Natelson D; Tour JM
    Small; 2009 Dec; 5(24):2910-5. PubMed ID: 19787676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved bipolar resistive switching memory characteristics in Ge0.5Se0.5 solid electrolyte by using dispersed silver nanocrystals on bottom electrode.
    Kim JH; Nam KH; Hwang I; Cho WJ; Park B; Chung HB
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9498-503. PubMed ID: 25971090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core-shell structure.
    Zhu Y; Shi J; Shen W; Dong X; Feng J; Ruan M; Li Y
    Angew Chem Int Ed Engl; 2005 Aug; 44(32):5083-7. PubMed ID: 16015668
    [No Abstract]   [Full Text] [Related]  

  • 8. Self-assembly-induced formation of high-density silicon oxide memristor nanostructures on graphene and metal electrodes.
    Park WI; Yoon JM; Park M; Lee J; Kim SK; Jeong JW; Kim K; Jeong HY; Jeon S; No KS; Lee JY; Jung YS
    Nano Lett; 2012 Mar; 12(3):1235-40. PubMed ID: 22324809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoionic transport and electrochemical reactions in resistively switching silicon dioxide.
    Tappertzhofen S; Mündelein H; Valov I; Waser R
    Nanoscale; 2012 May; 4(10):3040-3. PubMed ID: 22504836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generic relevance of counter charges for cation-based nanoscale resistive switching memories.
    Tappertzhofen S; Valov I; Tsuruoka T; Hasegawa T; Waser R; Aono M
    ACS Nano; 2013 Jul; 7(7):6396-402. PubMed ID: 23786236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonvolatile resistive switching memory properties of thermally annealed titania precursor/polyelectrolyte multilayers.
    Lee C; Kim I; Shin H; Kim S; Cho J
    Langmuir; 2009 Oct; 25(19):11276-81. PubMed ID: 19725555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coexistence of diode-like volatile and multilevel nonvolatile resistive switching in a ZrO2/TiO2 stack structure.
    Li Y; Yuan P; Fu L; Li R; Gao X; Tao C
    Nanotechnology; 2015 Oct; 26(39):391001. PubMed ID: 26358828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The observation of resistive switching characteristics using transparent and biocompatible Cu
    Abbas Y; Dugasani SR; Raza MT; Jeon YR; Park SH; Choi C
    Nanotechnology; 2019 Aug; 30(33):335203. PubMed ID: 31026860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microscopic imaging of electrical current distribution at the electrode-electrolyte interface.
    Wenyan Jia ; Jiamin Wu ; Di Gao ; Mingui Sun
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4252-5. PubMed ID: 25570931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel solid-state polymer electrolyte of colloidal crystal decorated with ionic-liquid polymer brush.
    Sato T; Morinaga T; Marukane S; Narutomi T; Igarashi T; Kawano Y; Ohno K; Fukuda T; Tsujii Y
    Adv Mater; 2011 Nov; 23(42):4868-72. PubMed ID: 21960484
    [No Abstract]   [Full Text] [Related]  

  • 16. Phase transition in porous electrodes. III. For the case of a two component electrolyte.
    Kiyohara K; Shioyama H; Sugino T; Asaka K; Soneda Y; Imoto K; Kodama M
    J Chem Phys; 2013 Jun; 138(23):234704. PubMed ID: 23802973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyelectrolyte-mediated assembly of copper-phthalocyanine tetrasulfonate multilayers and the subsequent production of nanoparticulate copper oxide thin films.
    Chickneyan ZS; Briseno AL; Shi X; Han S; Huang J; Zhou F
    J Nanosci Nanotechnol; 2004 Jul; 4(6):628-34. PubMed ID: 15518398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resistive switching memory based on bioinspired natural solid polymer electrolytes.
    Raeis Hosseini N; Lee JS
    ACS Nano; 2015 Jan; 9(1):419-26. PubMed ID: 25513838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laser-induced metal reduction from liquid electrolyte precursor.
    Kim D; Choi C
    J Nanosci Nanotechnol; 2013 Nov; 13(11):7581-5. PubMed ID: 24245296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel solid-state Li/LiFePO₄ battery configuration with a ternary nanocomposite electrolyte for practical applications.
    Wu F; Tan G; Chen R; Li L; Xiang J; Zheng Y
    Adv Mater; 2011 Nov; 23(43):5081-5. PubMed ID: 21997646
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.