These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 21671609)
1. Toxicity and internalization of CuO nanoparticles to prokaryotic alga Microcystis aeruginosa as affected by dissolved organic matter. Wang Z; Li J; Zhao J; Xing B Environ Sci Technol; 2011 Jul; 45(14):6032-40. PubMed ID: 21671609 [TBL] [Abstract][Full Text] [Related]
2. Mitigation of CuO nanoparticle-induced bacterial membrane damage by dissolved organic matter. Zhao J; Wang Z; Dai Y; Xing B Water Res; 2013 Aug; 47(12):4169-78. PubMed ID: 23571112 [TBL] [Abstract][Full Text] [Related]
3. CuO nanoparticle interaction with human epithelial cells: cellular uptake, location, export, and genotoxicity. Wang Z; Li N; Zhao J; White JC; Qu P; Xing B Chem Res Toxicol; 2012 Jul; 25(7):1512-21. PubMed ID: 22686560 [TBL] [Abstract][Full Text] [Related]
4. Interactions of CuO nanoparticles with the algae Chlorella pyrenoidosa: adhesion, uptake, and toxicity. Zhao J; Cao X; Liu X; Wang Z; Zhang C; White JC; Xing B Nanotoxicology; 2016 Nov; 10(9):1297-305. PubMed ID: 27345461 [TBL] [Abstract][Full Text] [Related]
5. Polymer coating of copper oxide nanoparticles increases nanoparticles uptake and toxicity in the green alga Chlamydomonas reinhardtii. Perreault F; Oukarroum A; Melegari SP; Matias WG; Popovic R Chemosphere; 2012 Jun; 87(11):1388-94. PubMed ID: 22445953 [TBL] [Abstract][Full Text] [Related]
6. Changes in the Daphnia magna midgut upon ingestion of copper oxide nanoparticles: a transmission electron microscopy study. Heinlaan M; Kahru A; Kasemets K; Arbeille B; Prensier G; Dubourguier HC Water Res; 2011 Jan; 45(1):179-90. PubMed ID: 20828783 [TBL] [Abstract][Full Text] [Related]
7. Dose-dependent genotoxicity of copper oxide nanoparticles stimulated by reactive oxygen species in human lung epithelial cells. Akhtar MJ; Kumar S; Alhadlaq HA; Alrokayan SA; Abu-Salah KM; Ahamed M Toxicol Ind Health; 2016 May; 32(5):809-21. PubMed ID: 24311626 [TBL] [Abstract][Full Text] [Related]
8. Uptake and toxicity of copper oxide nanoparticles in cultured primary brain astrocytes. Bulcke F; Thiel K; Dringen R Nanotoxicology; 2014 Nov; 8(7):775-85. PubMed ID: 23889294 [TBL] [Abstract][Full Text] [Related]
9. Distribution of CuO nanoparticles in juvenile carp (Cyprinus carpio) and their potential toxicity. Zhao J; Wang Z; Liu X; Xie X; Zhang K; Xing B J Hazard Mater; 2011 Dec; 197():304-10. PubMed ID: 22014442 [TBL] [Abstract][Full Text] [Related]
10. Copper-based nanoparticles induce high toxicity in leukemic HL60 cells. Rodhe Y; Skoglund S; Odnevall Wallinder I; Potácová Z; Möller L Toxicol In Vitro; 2015 Oct; 29(7):1711-9. PubMed ID: 26028147 [TBL] [Abstract][Full Text] [Related]
11. Effects of CeO Hou J; Yang Y; Wang P; Wang C; Miao L; Wang X; Lv B; You G; Liu Z Environ Sci Pollut Res Int; 2017 Jan; 24(1):226-235. PubMed ID: 27709432 [TBL] [Abstract][Full Text] [Related]
12. Intracellular uptake and toxicity of Ag and CuO nanoparticles: a comparison between nanoparticles and their corresponding metal ions. Cronholm P; Karlsson HL; Hedberg J; Lowe TA; Winnberg L; Elihn K; Wallinder IO; Möller L Small; 2013 Apr; 9(7):970-82. PubMed ID: 23296910 [TBL] [Abstract][Full Text] [Related]
13. Responses of a soil bacterium, Pseudomonas chlororaphis O6 to commercial metal oxide nanoparticles compared with responses to metal ions. Dimkpa CO; Calder A; Britt DW; McLean JE; Anderson AJ Environ Pollut; 2011 Jul; 159(7):1749-56. PubMed ID: 21550151 [TBL] [Abstract][Full Text] [Related]
14. Cell membrane damage and protein interaction induced by copper containing nanoparticles--importance of the metal release process. Karlsson HL; Cronholm P; Hedberg Y; Tornberg M; De Battice L; Svedhem S; Wallinder IO Toxicology; 2013 Nov; 313(1):59-69. PubMed ID: 23891735 [TBL] [Abstract][Full Text] [Related]
15. The severe toxicity of CuO nanoparticles to the photosynthesis of the prokaryotic algae Arthrospira sp. Che X; Ding R; Zhang Q; Li Y; Sun Q; Li Y; Zhang Z; Wang W; Gao H Environ Sci Pollut Res Int; 2021 Oct; 28(38):54105-54116. PubMed ID: 34043167 [TBL] [Abstract][Full Text] [Related]
16. Stability studies for titanium dioxide nanoparticles upon adsorption of Suwannee River humic and fulvic acids and natural organic matter. Erhayem M; Sohn M Sci Total Environ; 2014 Jan; 468-469():249-57. PubMed ID: 24035980 [TBL] [Abstract][Full Text] [Related]
17. Dissolved organic matter reduces CuO nanoparticle toxicity to duckweed in simulated natural systems. Rippner DA; Green PG; Young TM; Parikh SJ Environ Pollut; 2018 Mar; 234():692-698. PubMed ID: 29241155 [TBL] [Abstract][Full Text] [Related]
18. A mesocosm study of fate and effects of CuO nanoparticles on endobenthic species (Scrobicularia plana, Hediste diversicolor). Buffet PE; Richard M; Caupos F; Vergnoux A; Perrein-Ettajani H; Luna-Acosta A; Akcha F; Amiard JC; Amiard-Triquet C; Guibbolini M; Risso-De Faverney C; Thomas-Guyon H; Reip P; Dybowska A; Berhanu D; Valsami-Jones E; Mouneyrac C Environ Sci Technol; 2013 Feb; 47(3):1620-8. PubMed ID: 23240726 [TBL] [Abstract][Full Text] [Related]
19. Natural organic matter-induced alleviation of the phytotoxicity to rice (Oryza sativa L.) caused by copper oxide nanoparticles. Peng C; Zhang H; Fang H; Xu C; Huang H; Wang Y; Sun L; Yuan X; Chen Y; Shi J Environ Toxicol Chem; 2015 Sep; 34(9):1996-2003. PubMed ID: 25868010 [TBL] [Abstract][Full Text] [Related]
20. Effect of Chlamydomonas reinhardtii on the fate of CuO nanoparticles in aquatic environment. Yin E; Zhao Z; Chi Z; Zhang Z; Jiang R; Gao L; Cao J; Li X Chemosphere; 2020 May; 247():125935. PubMed ID: 31978663 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]