BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 21671652)

  • 1. Morphology-controllable synthesis of cobalt oxalates and their conversion to mesoporous Co3O4 nanostructures for application in supercapacitors.
    Wang D; Wang Q; Wang T
    Inorg Chem; 2011 Jul; 50(14):6482-92. PubMed ID: 21671652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controllable synthesis of mesoporous Co3O4 nanostructures with tunable morphology for application in supercapacitors.
    Xiong S; Yuan C; Zhang X; Xi B; Qian Y
    Chemistry; 2009; 15(21):5320-6. PubMed ID: 19350591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlled synthesis of mesoporous hematite nanostructures and their application as electrochemical capacitor electrodes.
    Wang D; Wang Q; Wang T
    Nanotechnology; 2011 Apr; 22(13):135604. PubMed ID: 21343642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Porous Co3O4 nanowires derived from long Co(CO3)(0.5)(OH)·0.11H2O nanowires with improved supercapacitive properties.
    Wang B; Zhu T; Wu HB; Xu R; Chen JS; Lou XW
    Nanoscale; 2012 Mar; 4(6):2145-9. PubMed ID: 22337265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly ordered mesoporous cobalt oxide nanostructures: synthesis, characterisation, magnetic properties, and applications for electrochemical energy devices.
    Wang G; Liu H; Horvat J; Wang B; Qiao S; Park J; Ahn H
    Chemistry; 2010 Sep; 16(36):11020-7. PubMed ID: 20690118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of 3D-nanonet hollow structured Co3O4 for high capacity supercapacitor.
    Wang Y; Lei Y; Li J; Gu L; Yuan H; Xiao D
    ACS Appl Mater Interfaces; 2014 May; 6(9):6739-47. PubMed ID: 24745604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrothermal synthesis and structure evolution of hierarchical cobalt sulfide nanostructures.
    Dong W; Wang X; Li B; Wang L; Chen B; Li C; Li X; Zhang T; Shi Z
    Dalton Trans; 2011 Jan; 40(1):243-8. PubMed ID: 21088794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Template-free approach to synthesize hierarchical porous nickel cobalt oxides for supercapacitors.
    Chang J; Sun J; Xu C; Xu H; Gao L
    Nanoscale; 2012 Nov; 4(21):6786-91. PubMed ID: 23001031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile and green synthesis of mesoporous Co3O4 nanocubes and their applications for supercapacitors.
    Liu X; Long Q; Jiang C; Zhan B; Li C; Liu S; Zhao Q; Huang W; Dong X
    Nanoscale; 2013 Jul; 5(14):6525-9. PubMed ID: 23760312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures.
    Subramanian V; Zhu H; Vajtai R; Ajayan PM; Wei B
    J Phys Chem B; 2005 Nov; 109(43):20207-14. PubMed ID: 16853612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphology controlled synthesis of nanoporous Co3O4 nanostructures and their charge storage characteristics in supercapacitors.
    Deori K; Ujjain SK; Sharma RK; Deka S
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):10665-72. PubMed ID: 24158975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tin oxide (SnO2) nanoparticles/electrospun carbon nanofibers (CNFs) heterostructures: controlled fabrication and high capacitive behavior.
    Mu J; Chen B; Guo Z; Zhang M; Zhang Z; Shao C; Liu Y
    J Colloid Interface Sci; 2011 Apr; 356(2):706-12. PubMed ID: 21300365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile coating of manganese oxide on tin oxide nanowires with high-performance capacitive behavior.
    Yan J; Khoo E; Sumboja A; Lee PS
    ACS Nano; 2010 Jul; 4(7):4247-55. PubMed ID: 20593844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transition metal oxide and graphene nanocomposites for high-performance electrochemical capacitors.
    Zhang W; Liu F; Li Q; Shou Q; Cheng J; Zhang L; Nelson BJ; Zhang X
    Phys Chem Chem Phys; 2012 Dec; 14(47):16331-7. PubMed ID: 23132379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surfactant dependent self-organization of Co3O4 nanowires on Ni foam for high performance supercapacitors: from nanowire microspheres to nanowire paddy fields.
    Zhang X; Zhao Y; Xu C
    Nanoscale; 2014 Apr; 6(7):3638-46. PubMed ID: 24562602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-Assembled Hierarchical Formation of Conjugated 3D Cobalt Oxide Nanobead-CNT-Graphene Nanostructure Using Microwaves for High-Performance Supercapacitor Electrode.
    Kumar R; Singh RK; Dubey PK; Singh DP; Yadav RM
    ACS Appl Mater Interfaces; 2015 Jul; 7(27):15042-51. PubMed ID: 26086175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of novel Co
    Reddy NR; Reddy PM; Mandal TK; Reddy KR; Shetti NP; Saleh TA; Joo SW; Aminabhavi TM
    J Environ Manage; 2021 Nov; 298():113484. PubMed ID: 34391101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using mesoporous carbon electrodes for brackish water desalination.
    Zou L; Li L; Song H; Morris G
    Water Res; 2008 Apr; 42(8-9):2340-8. PubMed ID: 18222527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tuning the electrocrystallization parameters of semiconducting Co[TCNQ]2-based materials to yield either single nanowires or crystalline thin films.
    Nafady A; Bond AM; Bilyk A; Harris AR; Bhatt AI; O'Mullane AP; De Marco R
    J Am Chem Soc; 2007 Feb; 129(8):2369-82. PubMed ID: 17263534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile preparation and enhanced capacitance of the polyaniline/sodium alginate nanofiber network for supercapacitors.
    Li Y; Zhao X; Xu Q; Zhang Q; Chen D
    Langmuir; 2011 May; 27(10):6458-63. PubMed ID: 21488622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.